
AD-AIIO 809 SYACUSE UNIY NY SCHOOL. OF C09PIJEl AND0 ZWOR0ATION --ETC P/B 9/2
INTEGRATED PA1*4441 PIOCESSESt THE ELEWNYS OF MEANING IN LANS-ETC (U)
NOY $1 9 F STORM F30602-77-C-0236

L~INLSSI~tEf MADC-TR80-379-VOL-4 IL

till l

IIIJL251111169

MICROCOPY RESOLUTION TEST CHART
NA I ONA [,iRAI ~I I AT.OA A

LEVEi
RAD-TR40479, Vol IV (of five)
Final Techical Reoet
Neva nbe 1981

SINTEGRATED PARALLEL PROCESSES:
I <THE ELEMENTS OF MEANING IN LANGUAGE

Syracuse University

Edward F. Stoem

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTICSELECTE
FEB tt 19820

H[~ROME AIR' DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

86202 11075

I6.

This report has boon reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-379, Vol IV (of five) has been reviewed and is approved for
publication.

APPROVED:

CLEMENT D. FALZARANO '

Project Engineer

APPROVED:

aJ. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER:

JOHN P. HUSS

Acting Chief, Plans Office

If your address has changed or if you wish to be removea from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC- (ISIS) Griffiss APB NY 13441. This will assist us in
maintaining a current maLling list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that tt be returned.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dala Enlerid)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER !2. GOVT ACCESSION NO. 3. RWECIPIErNT*S CATALOG NUM89R

RADC-TR-80-379, Vol IV (of five) --/ jje'3C _

4. TITLE (end Subtitle) S. TYPE OF REPORT A PERIOD COVERED

INTEGRATED PARALLEL PROCESSES: Final Technical Report

THE ELEMENTS OF MEANING IN LANGUAGE 1 Oct 77 - 30 Sep 80
6. PERFORMING ONG. REPORT NUMBER
N/A

7. AUTHOR(&) A. CONTRACT OR GRANT NUMSER(i)

Edward F. Storm F30602-77-C-0235

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Syracuse University AREA I WORK UNIT NUMBERS

School of Computer & Information
Science

Syracuse NY 13210
55811903

II CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

November 1981
Rome Air Development Center (ISIS) 13. NUMBER OF PAGES

Griffiss AFB NY 13441

14. MONITORING AGENCY NAME & ADORESS(If different from Conirollina Office) IS. SECURITY CLASS. (of this report)

NCLASSIFIED

Same ISo. OECL ASS% FICATION/DOWNGRADIN G
N/A SCH'EDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

I. SUPPLEMENTARY -OTES

RADC Project Engineer: Clement D. Falzarano (CO)

19. KEY WORDS (Continue on reverse side if neceesery end i'oqtif ." block number)

Programming Systems Corr Modeling

Programming Languages Sys.. ulation
Programming Grammars Schedul-L - Algorithm

Proving Programs Correct Logic Programming

20. ABSTRACT (Continue on reverse side If necessar, nd Identity by block number)

-The "Language Studies" contract is divided into four project areas, all of

which are directed to the problems of effectively, reliably and efficientl

using modern computers in a wide range of applications.

Three of the projects deal with methods of communicating with computers.

Task i. Very High Level Programming Systems (P.I.: J.A. Robinson). This

group is working towards combining the features developed to support work

in the area of artificial intelligence and those used in general program

DD , J, , 1473 EDITION OF I NOV 65 IS OBSOLETEU CL S IUNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whten Del. Entered)

-- I-. lllll~ .,,,JL _

1TCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGC%,% 00 K016900

-evelopment into a new conceptual framework that can be understood and
used by a large community of users. Task 2. Proving Program Correctness
(P.I: J.C. Reynolds). This group is working towards programming language
designs which increase the probability that specification errors will be
detected by the compiler or interpreter and to provide the language
facilities so that users will more nearly be able to prove that programs
perform as they are specified than is currently possible. Task 3.
Grammars of Programming (P.I.: E.F. Storm). This group is working toward

the development of methods which will allow users to communicate with
computer programs in terms more normal to their every day communication
forms. Task 4. Systems Studies (P.I.: R.G. Sargent). This group is
working towards developing more sophisticated and efficient models of
computer systems which can predict system performance when given
particular parameter values. The current efforts concern models of trans-
action processing systems

V Of

Ne~

\ t

K O)

UNCLASSI FlED

SCCURITY CLASSIFICATION OF 11, PAGEfWhe Df*s Enr.ee)

Preface

This report describes efforts completed in the Language

Studies project at Syracuse University under RADC contract

F30602-77-C-0235. The work covers the period October 1, 1977

thrcagh September 30, 1980.

The report is produced in five volumes to facilitate single

volume distribution.

Volume 1. Report from the Very High Level Programming Systems

task. Report title is "Logic Programming in Lisp".

Volume 2. Report from the Systems Studies task. Report

title is "Multiple Finite Queueing Model with Fixed

Priority Scheduling".

Volume 3. Report from the Systems Studies task. Report title

is "An Algorithmic Solution for a Queueing Model

of a Computer System with Interactive and Batch Jobs.

Volume 4. Report from the Grammars of Programming task. Re-

port title is "Integrated Parallel Processes: The

Elements of Meaning in Language".

Volume 5. Report from the Proving Program Correctness task.

Report title is "Proving Program Correctness" task.

iii

Abstract

This document reports in summary form some inves-
tigations into the notion of meaning underlying lan-
guage, thought and behavior in humans. The general
conclusion is that a rigorous specification of cyclic
or recurring processes, and the hypothesis that these
processes are the realities that underly language,
thought and behavior will significantly expand our
understanding of these issues, and will enhance our
capacity to develop disciplined and responsible tech-
nology to improve human communication. In particular,
we may look forward to more fully adequate and more
sensitive systems for communication between the human
and the computer.

This report presents its material in a preliminary
way and discusses in outline form some ideas current in
the relevant literature that led to that material.
Precise formulations are not included, nor are there
adequate examples to justify the material. Careful and
thorough formulation, adequate implementation, and
substantive applications constitute the next phases of

this project.

iv

Acknowledgements

Conversations with Dr. Robert L. Morris have
contributed in fundamental and specific ways toward i-
dentifying what is important in human communication,
and what must be represented in a formulation. Some of
the ideas in this report are his.

I am in a special debt to Mr. Guy Snedeker. He
has helped with organizing concepts, identifying new
ones, illustrating them and above all, judging their
significance.

Vi -. : . . -

Contents

0. Summary 0
1. Introduction 1
2. Sketch of Personality Structure 5
3. The Nature of Meaning 8
4. Computing as a Process 16
5. Brain and Computation 18
6. Computability in Grammar 20
7. Abstract Theory of Computing 24
8. Interpretation in Grammar 27
9. Structure of Mental Images 29
10. Mental Structures in Grammar Theory 32
11. Lexical and Categorial Structures 35
12. The Form of Meaning 44

A. Preliminaries to Formulation 44
B. Background 50
C. Occurrences 51
D. General Implementation Notions 52

13. Integrated Parallel Processing 55
A. Review of the System 55
B. Computational Environments 57
C. Quadruple Sets 58
D. State Transitioning 62
E. World Lines 64
F. Transition Time 65
G. Interrupting 69
H. Status Changes 73
I. Simple Test Cases o.80
J. Plans for the Future 93

Appendix 96
Bibliography 128

vi

0. Summary

In the introduction we review some general phenomena of
language and consider some matters of perspective in its study.
In the second section we present a skeleton of a theory for the
forms found in language, thought and behavior, and for the inte-
gration of personality factors, integrative processes which we
believe affect language and thought in essential ways. In the
third section we discuss some general issues in the relation be-
tween syntax (or grammar) and meaning and relate them to the
perspectives discussed in the first section.

In the fourth section we consider computation regarded as a
physical or real process, AnI see that the issues that arise
clarify the widespread suspic. 1,, that the brain/mind (or what-
ever) is a computer. In the fifth section we consider very
briefly the idea that the brain is a computer, and we see that
the suspicion is not confirmed by direct observation of brain
structures and processes.

In the sixth section we consider the contemporary study of
grammar from the point of view of computability theory and see
that what is described in computational terms is necessarily void
of interpretation - of meaning in terms of familiar concepts and
abstractions. In section seven we look at the abstact theory of
computing and see what is involved in concluding that a process
is a computation, or that a phenomenon is a computed structure.

In the eighth section we review two theories about semantics
in generative grammar and see that they are really alternative
theories about the organization of computational systems. The
ninth section looks superficially at just a few ideas about the
structure of mental images, and the tenth section looks in detail
at the deep structures of grammatical theory and how they inte-
ract with lexical processes. In the eleventh section we survey
some ideas about lexical structures themselves.

Section twelve offers an intuitive, not precisely specified,
theory of the forms of meaning, a theory that regards those forms
as recurrent processes that can combine in specified if not fully
definite ways, and can undergo changes in combination dynami-
cally, where the forms of these changes must adhere to rule but
may be unpredictable in general. We postulate that all these
forms are the "carriers" of experience or perception. In the
last section we describe the prototype of a computer system to
implement cooperating recurrent processes.

The Appendix summarizes some earlier ideas about the nature
of occurrences. Those ideas did not lead to productive results
until we appreciated that dynamic processes could be identified
exactly with occurrences. These processes can be simulate,. and
that simulation is what is described in the thirteenth section.

-1-

I. Introduction

"I never forgot it. I went to a seminary just after high

school, and we had religion class on Sunday. This one Sunday
afternoon something must have gotten to the priest who taught us
because he was really fired up. He said that there were, as in
most other human systems, two forms of religion. One, he said,
was concerned with devotion, with ritual, with keeping up to a
set of rules and regulations. This variety, and he spoke with
distaste, tried to bring deep and universal philosophical and
theological issues down to the level of the common man. But the
end result, he went on, was often nothing more than bead jingling
and the worship of statues. The other variety, he said, was
concerned with the ultimate nature of reality, with the human
spirit, with the ultimate conscious source of all reality. It
tried to understand our destiny in terms of this ultimate con-
sciousness. This latter variety, he said, seems to be beyond the
intellectual capacity of most human beings, but it was the only
variety that was intellectually worth studying. Bead jingling,
he said, was mere operationalism, a word I did not yet know.

"His remarks brought my mind to a standstill then, and I've
never been the same since. Every time I come across a body of
thought that proposes to be a systematic treatment of some class
of phenomena I ask myself whether I am looking at the deep and
substantive side of it or whether I am seeing only the bead
jingling. Technology has always struck me as the bead jingling
side of science, and I guess that's why I have never been able to
get interested in technology for its own sake.

"Only some years later did I come to appreciate that this
priest had missed something. I think he did not appreciate that
both aspects are needed if you are to have a meaningful religion,
and that in general both aspects are needed if you are to have a
meaningfu! system of thought on any subject.

"Maybe he was right in identifying operationalism with bead
jingling. But his tone suggested, at least to me, that its dis-
tance from theory made it inconsequential, if not foolish. If
that's what he meant, then he was wrong for sure. There are
surely universal organizing principles that govern all of reali-
ty, or at least whatever of it we can know. But we sort these
principles out with reference to our statues and beads, and we
learn a lot by illuminating our statues and jingling our beads."

This protocol, from a confidential counselling session, oc-
curred naturally in four segments, represented here as para-
graphs. Each paragraph in turn consists of a sequence of sen-
tences. Some of these are factual and others are metaphorical.
And the subject matter of this discourse is hardly concerned with
immediate and tangible aspects of physiclal reality. Experience
might have provoked it but its topics are quite abstract and re-
mote from such notions as mass, position, momentum, or the
shapes, sizes and movements of constellations of physical objects

-2-

in a localized environment.

It is an interesting e'-ercise to appreciate that the shift
from the first four paragraphs here to the next one was accompa-
nied by what we have to call, for want of a better terminology, a
kind of "mental feeling", a feeling that accompanies not a shift
from one topic to another, but a shitt from one level of atten-
tion and organization to another, related but different, level of
attention and organization. And in fact this present paragraph
itself provokes yet another such shift.

The task that confronts the study of language is to under-
stand how such arrangements of verbal signals as those exhibited
above and their associated shifts in impression are implicated
with human thoughts and feelings, and in particular with the
kinds of thoughts and feelings that seem to be expressed in those
particular signals.

This study began as a study in computational linguistics -
how can a computing machine be made to do some of the things hu-
man beings seem to do with language. As the study progressed, I
came to see that there are two ways to pursue answers to the im-
portant questions involved. According to one plan we assemble
systems which perform as human beings appear to perform. To the
extent that these systems are successful we add them to our
technological arsenal. And if we wish, we can try to see whether
the technology we used to assemble them is reflected in the bio-
logical instruments that humans appear to use to similar ends.

According to the other plan we try first to determine what
instruments, what structures and processes the human brings to
bear on his activities. When we find them, we may then try to
incorporate analogous structures and processes into our technol-
ogy. This study came finally to focus on this latter kind of
plan. It came to be concerned with a search for the structures
and processes that underly the human use of language.

A number of disciplines are implicated in this search for
these structures and processes. Philosophy through the ages, and
in more modern times linguistics and psychology have sought them.
Religion is deeply involved, and anthropology and sociology are
in important ways relevant. The physical sciences have provided
one paradigm for the entrainment of theorizing with observation,
and mathematics and modern logic have tried to clarify those most
fundamental notions for all thinking humans - the ideas of cohe-
rence and of consequence.

Yet, within this spectrum of investigations, one finds again
the constrast between observation of what occurs, and the obser-
vation of the structures and processes that are instrumental.
The search for and the study of these instruments is in principle
a study of forms - exactly and definitely specified structures
and processes, where exactness and definiteness are achieved by
expression in the language of mathematics and, finally, in some
language of logic. This study is concerned with the forms

-3-

directly associated with language and with the ways these forms
are entrained ahd harmonized together through the processes of
language. The uses of these forms, these structures and pro-
cesses, for particular ends is a different study altogether.

Perhaps I should indicate very briefly why I think it ap-
propriate that a study supported by the Department of Defense be
oriented in this way. The defense establishment is organized,
administered, and its obligations executed by human beings. And
military, diplomatic and intelligence activities involve complex
systems of interacting human personalities, whether in a neutral
exchange of information, in a competitive situation or in an ad-
versary relationship. We surely improve our position when we
deepen our understanding of the instruments that humans are con-
strained to use when they think, speak and act. Secondly, an
open-minded search for these natural instruments holds out the
elusive but nevertheless real possibility that we may come upon
fundamentally new technologies - perhaps technologies that have
been used for hundreds of millions of years by organisms evolving
in a not altogether friendly environment.

I will offer here a framework for thinking about the human
personality and a meager hint about novel technology. Neither of
these offerings is original in any important sense, but their
integration may be of interest and may eventually yield techno-
logical benefit. Unfortunately I can offer little in the way of
substantiation or justification, either theoretical or technolo-
gical. The framework I will describe is the result, or outcome,
of this study, and this report would be very different in sub-
stance had I had this framework available to me three years ago.

A study that is concerned with the relation between natural
language and computation is one that involves a number of dif-
ferent aspects of the human personality. If it is to be non-
trivial, it will necessarily be cross-disciplined, heterogeneous
and eclectic. I will not offer now any specification for what I
mean by "the human personality" since that notion is, in a sense,
the subject of the entire study. I do mean it to include a va-
riety of functions, processes and structures that are characte-
ristically human if not uniquely human. This study is then a
speculative pre-scientific contribution, rather than one which
adds to scientific methodology or technology. But at the end I
will propose a certain instrument which may have not only tech-
nological applications but may also constribute to empirical and
methodological aspects of the study of human nature, of human
language, and more generally of the role of computation in human
activities. Beyond the possible experimental applications it is
suggested that this technology may be useful in the development
of military and industrial command and control systems, in man-
machine interfaces, in computer-assisted instruction, and even in
such a routine setting as a simple time-shared computer system
supporting conventional scientific And business computations. In
general, candidate applications may be found wherever human com-
munication is involved.

-4-

2. Sketch of personality structure

I will presuppose a certain characterization _f the human
personality, one which I think is fairly unexceptionable, al-
though its relevance to other issues may be called into question.
It provides a framework which motivates the emphasis of this
study and provides organization at certain crucial stages. I
will suppose that each individual human personality is distinct
and unique in important respects, but that there are formal or
structural features that are common to every human personality.
Individual variations are thus additions to, elaborations of and
constrained deviations from this common norm. The generaliza-
tions I propose are not to be construed as assertions made with
any certainty, nor are they necessarily empirically testable,
although future insight may make some of them so. Tacit
throughout will be suitable qualifiers such as "I think that
... ", "It may be the case that ..." or "It is proposed that ..

to cite some typical hedges. I will speak of the idealized corn-
mon part of the human personality as "the human norm", either to
refer to an individual instance or in a generic sense.

The human norm has access, by orderly means, to an abstract,
organized and stable record of its experience. I will not at the
moment consider how this record is obtained from experience,
exactly how it is organized, or how new experiences in succession
are integrated into it. I require this record to be abstract
since a consideration of the concrete record of experience be-
longs properly to the biological sciences and more particularly
to neurophysiology in all its branches. In any case the issue is
moot since at the present time we do not know how perceptions are
related to physiologically defined sensations, or how the ab-
stract organization of perceptions is related to these sensations
and the physical structure of the organism. When neurophysioloqy
provides us with a reliable and verified theory for the physical
basis for memory, we will then have to relate the structures an6
processes of that theory to whatever we will then know about the
stable, organized, abstract record of the experience of the human
norm, how that record is used and what it is used for.

The human norm routinely and sometimes voluntarily engages
in purposeful activity that in part determines a selection pro-
cess acting upon the record of experience (the "RE"). One may
think that voluntary purposeful activity can be accounted for
solely with reference to behavior, but this thought ignores too
many issues. Until we can account with some certainty for the
relation between sensation and perception and between perception
and motor activity physiologically described, we have no adequate
or coherent link between voluntarily adopted purpose and behav-
ior. This is simply because many of our thoughts and actions are
organized with respect to what is in perception and very rarely
with what is in sensation. It is likely that several distin-
guishable aspects of the human norm participate in an orderly way
in determining this selection process. The process itself is a
function in part of both the form and the content of RE. Addi-
tionally it may be conditioned by the behavior of the human norm,

-5-

and by anatomical and physiological characteristics unique to the
particular physical eexpression of that norm. And it will cer-
tainly be conditioned by the environment in which the human norm
functions, as well as by the processes that organize RE and in-
corporate new experiences into it. I will assume that conscious
awareness is also essentially implicated with this selection
process. In particular I will assume that we can be precisely
aware of just one item from immediate experience or RE at a time,
whether that item is simple (atomic) or complex, and I therefore
also assume that the distinction between atomic and composite
entities in RE can be made sufficiently precise. That is, the
human norm has the capacity to particularize and localize its
focus of attention on differentiated items in RE.

The human norm has the capacity to organize freely, and to
reorganize, transient occurrences of fragments of its RE with
reference to an orderly system of interacting preferential judg-
ments. In a loose and informal way we may understand these to be
described with reference to a number of dimensions, many of which
are similar in character to what have been called "emotions". A
direction is associated with each such emotional dimension, and
it is this direction that gives rise to the concept of prefer-
ence. Specific patterns of preference will not be part of the
human norm. Each instance of the human norm will have charac-
teristic preference patterns that vary with experience, past and
present, and these patterns are also influenced by other factors
in the human norm and its environment. But the capacity for
patterns of preference will be universal - an essential aspect of
the human norm.

Along the dimension of acquisitieness, for example, we will
have the biologically normal disposition to acquire what is
needed for biological survival, and beyond that we will have
different degrees of desire, with extremes of greed, and beyond
to obsession. Moving in the other direction we will have in-
creasing indifference to acquisition, and in extreme cases a
nearly complete neutrality or nearly total lack of concern. But
the presence of the dimension indicates some degree of acquisi-
tiveness, however slight. To eliminate all acquisitiveness is to
eliminate the dimension itself. We also note that with respect
to acquisitiveness, a human personality with total lack of con-
cern is one with no felt need to solve problems connected with
acquisition.

Along the dimension of aggression, for another example, we
will have the biologically normal disposition to fight for sur-
vival when it is appropriate. Moving farther out on this dimen-
sion we find increasing disposition to more and more arbitrary
argumentative attitudes and orientation toward violence, both
physical and mental. But interestingly, as we neutralize ag-
gression, we find, as before, increasing indifference and lack of
concern. Along the dimension of submissiveness we have the nor-
mal disposition to cooperation, and in its extremes, the feelings
associated with obeisance, fawning and self-humiliation. Along
the dimension of cheerfulness we have a varying normal disposi-

-6-

tion to good humor, and in its extreme the disposition to believe
unrealistically in the "best of all possible worlds". There are
dimensions of comedy, tragedy, hate, love, generosity, vengeful-
ness, guilt, innocence, temperance, and a vast host of others.

It is important to note that these dimensions do not con-
stitute contrasting pairs of dispositions on one dimension.
Greed and generosity are not opposite ends of the same scale.
Indeed, we may find both factors operating simultaneously and
selectively in the same human norm. Note also that I am not
speaking here of behavior, of acts of greed or generosity, but
only of a preferential attachment applied to selected dimensions,
placing the human norm at least temporarily at specific degrees
of preference. At the low end of each of these dimensions we
find increasing lack of involvement with the emotion, lack of
attachment. And finally we note that we may try to define com-
posites - dimensions which are expressed as combinations (li-
near?) of others. And then preferential judgments may come to be
associated with these composites. For example, we may express
guilt as the sum of degrees of shame and responsibility, satis-
faction as the sum of desire and gratification, and pity as a sum
of aversiveness and compassion.

These dispositions to preference are universal in their
form, although individual human personalities may make varying
use of the general capacity. Other dimensions of human experi-
ence that admit of preferential judgment include believing, ho-
ping, wishing, doubting, denying, suspecting, imagining, assum-
ing, guessing, dreading, fearing, and on and on. The absence of
each of these is in the specified respect a neutral state. In
each case, as one moves further and further to the low end of the
scale one encounters not complementary judgments but rather the
absence of the judgmental attitude. The less one is involved
with these scales the more objective can be one's perception of
reality, and one's purposeful activities. And then, perhaps, the
more detached one is found to be.

To say that the human norm refers its activities to prefe-
rential judgments is to say that it has the capacity to try to
position itself at arbitrary points on these scales. It may at-
tempt to increase its involvement with one (attachment) or to
decrease its involvement with another (aversion). I will take
these capacities for attachment and aversion as universal
properties of the human norm. These two contrasting universals
are then the origin of the directionality inherent in emotional
dimensions.

There is also in the human norm a capacity to conceptualize
or to abstract. It is an abstraction to distinguish visual from
non-visual experiences. Red is an abstraction, as is squareness,
triangularity and circularity, and straight lines and even points
are abstractions. Softness, roughness and smoothness are tactile
abstractions, and the notion "tactile" is itself an abstraction.
In the auditory system, harmonies and dissonances are abstrac-
tions as are the notions of harmony and dissonance themselves.

-7-

The capacity for abstraction is so widespread, so inevitable,
that we suppose a separate organ in the human norm to account for
this pervasive and indeed decisive activity. We note that in
particular this capacity to abstract may operate not only on di-
rect sensations, but also on the dimensions of preferential
judgments and their composites, as well as upon the results of
the action of the abstraction agency itself.

There are, then, four capacities that are universal to the
human norm - the capacity to select purposefully from the record
of experience, the capacity to form varying degrees of attachment
and of aversiveness, and the capacity arbitrarily to form ab-
stractions and conceptual systems.

It is theoretically inherent in the capacity for abstraction
that it has no apparent limit. The organization of experience
into visual, auditory, tactile, olfactory ad gustatory categories
is only the beginning. Even if we believe with Langer that the
sense organs provide us with organized forms, we still recognize
that occurrences of these forms are subjected to unbounded levels
of abstraction. This abstraction capacity is at the foundation
of science, art, ritual, religion, politics and all social in-
stitutions. At the personal level it is implicated with the
control of waking life, with dreams, with structured institutions
and with the role of the individual in them, with metaphor, with
social deviance, with neurotic attitudes and with the variety of
what we call "psychopathologies". It is the selective interac-
tion of particular abstractions with the universal capacity for
preferential judgments that produces the dimensions of the emo-
tions. This is simply to say that preferences are not completely
arbitrary. Their variation is systematically related to other
aspects of the human norm.

3. The nature of meaning

It is a system of abstractions and preferential judgments,
along with the current experience and the operation of the agency
that integrates that experience into RE that determines at least
in part the fragment of RE that will occur in conscious aware-
ness, or that will constitute conscious awareness at particular
moments, and these are also the factors that will determine the
meaning of any particular utterance in language made by the human
norm. In summary, these aspects of meaning are,

(i) a fragment of the record of experience;

(ii) a conceptual organization of this fragment;

(iii) a system of preferential judgments;

(iv) current experience;

(v) purpose - a primary preferential judgment.

-8-

In addition there will be the processes that integrate these as-
pects of experience, and the overall process of coordination a-
mong these processes themselves. These include

(*i) incorporation of current sense experience into RE;

(*ii) selection of particular preferential judgments;

(*iii) applications of selected preferential judgments to
contents of awareness and its supporting unconscious or
background substrate;

(*iv) organization of elementary units, at each level, into
composites meeting conditions of relevance where relevance
is related to systems of abstraction and systems of prefe-
rential judgments as well as to the current flow of sense
experience.

(*v) integrative processes to organize and synchronize
these mental processes..

I will need a specific term to refer to this arrangement of
structures and processes in the human norm at any given moment
and I will use the word "estate". We have a function, esteate
which takes a moment of time as an argument and returns the
norm's estate at that moment as its value. One of the tasks of
linguistics is to relate these structures and processes that
constitute the estate to those that are implicated in the use of
natural language.

If we try to use current views about the nature of language
to communicate with a digital computer using natural language,
the computer will have to be able to construct, according to al-
gorithmic design, a pairing between expressions in the selected
natural language and well-defined objects in a domain represen-
ting all or parts of the estate, a domain whose structure is
distinct from the structure of linguistic domains. That is,
there is no reason to expect that the material which is the sub-
ject matter of language discourse will have the same structure as
do expressions in the language. The subject matter of language
discourse is constructed in part by the capacity for abstraction,
and since this is an arbitrary capacity, we may not assume in
advance what will be the nature of the relation between the
structure of reality and the structure of the product of this
abstraction capacity. But if an adequate pairing is to be ob-
tained, both the domain of language expressions and the domain of
estates must each be expressible as computable structures, and
the pairing process itself must be explicitly articulated as an
algorithm. These considerations may lead us, incorrectly, I
think, to imagine that a purely referential or denotational
scheme can capture what it important and valuable in the use of
natural language for communication with a computer.

-9 -

= "V m _. , _ . .. ,_. , . -m .A 6 .

For example, if Exp is a set of expressions, atomic and
composite, and Ob a set of objects and processes which occur in a
natural estate, which expressions are to refer to, then with
reference to a proper naming function Prop, we can define a ref-
erence function, ref:Exp -> Ob, in very general terms as follows:

If x is atomic then (ref x) is (Prop x), and if x is
the composite (xl x2 ... xN), then (ref x) is

(comp (struc x) (ref xl) ... (r-f xN)),

where struc i similar to quotation in that it displays the syn-
tactic structure of the unevaluated expression supplied to it.
struc might be expressed, in slightly expanded form, more sug-
gesti=veiy as a composition,

(struc x) = (syntactic-form (quote x))

comp is an extraordinary and interesting function. comp spec-
iYl-es how the reference of a composite expression x is-determined
not only by the references of its immediate constituents but also
by the "grammatical" composition rules according to which x is
formed out of its immediate constituents.

But we may raise questions about this general plan. What
constitutes an adequate set of language structures for these
purposes? What is the nature of the function comp? Is verbal
text in fact the best means for communicating? What other kinds
of signals are regularly involved in a communication event? Is
communication with language facilitated by simultaneous reception
of signals in non-verbal modalities? If so, how can knowledge of
these be brought to iear on human communication? The problem
with the ref function is that it tells us a great deal about how
forms are manipulated if we already have some idea that what the
forms are associated with can be "applied" to certain other
forms. That is, the systematic form of reference and denotation
presupposes an "applicative" language. But any association of
this form manipulation with the substance of what the forms are
associated with is quite arbitrary. It is true that the appli-
cation of arithmetic functions to numerals can be uniformly de-
scribed with a function like ref, but then there are no arithme-
tic functions in reality, and there aren't really any numerals
either. These latter objects exist only as a consequence of our
capacity for abstraction, and a certain social fluency for giving
selected abstractions wide conventional currency.

Another problem with ref is its focus on immediate consti-
tuency. The more general notion of constituency is surely a va-
lid one, but it is not at all clear how one would express a re-
vised version of ref to account for the situation in which arbi-
trary constituents of an expression determine its value under
ref. And perhaps more fundamentally, we might very well want a
v-sion of ref that allows the value of (ref x) to affect the
values that ref will determine for constit-ents of x.

- 10 -

If the sets Exp and Ob are well-defined sets, then the
function ref given above is simply a realization of what is
called "mo-el theoretic semantics" for a formal language. [Jar-
dine, 1975] has shown that the plan to apply model theoretic
semantics to natural language may make unreasonable demands on
natural language. I think his point is that the truth condition
for an arbitrary sentence in natural language may depend upon the
truth or falsehood of other sentences in the language, and this
is theoretically unacceptable for a simple reason. We lack a
decision procedure for sentences in complete logical languages
that include quantifiers. Other linguists and philosphers have
seen other aspects of the attempt to use model theoretic seman-
tics. [Potts, 1975] has observed that very little is added to
the notion of meaning in natural language by model theory, be-
cause the system to which the function ref maps expressions must
itself be just as well-defined as the system of well-formed ex-
pressions in the language itself.

In short, the question of meaning just gets shifted from one
system to another without any substantial clarification.

Another issue related to model theoretic semantics and logic
is that of "presuppositions". Let me use asterisks to indicate
stress, one for minor stress and two for major stress. Then the
sentence

John called *Mary a **virgin and then *she insulted **him.

is said to presuppose that to call someone a virgin is to insult
that person. I think this is obviously wrong. In the sample
sentence, what is infact communicated is the suggestion that to
call someone a virgin is to insult her. It is part of the mes-
sage itself, and is relative to the occasion of utterance. Other
confusions surround the notion of presupposition. [Keenan, 1975)
for example says that

A sentence S logically presupposes a sentence S' just
in case just in case S logically implies S' and the
negation of S, -S, also logically implies S'. In
other words, the truth of S' is a necessary condition
on the truth or falsity of S.

This is clearly inadequate, because the conjunction of the two
implications is truth functionally equivalent to S'. The given
condition for presupposition is thus simply equivalent to S' it-
self, and is therefore no condition at all.

One can say that the issue is not simply truth functional,
but then we face the same problem that Jardine pointed out - to
determine presupposition we have to have, in general, a procedure
to decide consequence among sentences with quantifiers. I think
that much of the notion of presupposition evaporates if we real-
ize that a sentence ought to mean rather all of what it says.
"Mary loves the puppy she found" doesn't preuppose that Mary
found a puppy - it tells us that she found one. "Fred ate an-

- 11 -II

other turnip" doesn't presuppose that Fred ate at least one tur-
nip - it tells us so. I suggest that in the absence of strong
and clear evidence to the contrary, we have to regard presuppo-
sition, as exhibited in these and similar examples, as a straw
man.

And even more broadly we ask in what ways does a specifica-
tion of syntactic structures restrict the facility with which we
can integrate communication signals in a variety of different
modalities. And indeed, what do we mean by "different modali-
ties"?

In very broad and general terms we may ask how subject mat-
ter domains are to be represented in computational form. This
question has received considerable and sophisticated attention
not only in the field of modern linguistics but also in computa-
tional linguistics and artificial intelligence. To what extent
are the schemes devised so far in those fields adequate? Given
well-defined domains of language and of subject matter, what
constitutes an adequate pairing? Is the denotational aspect of
language the appropriate basis for the pairing algorithm? What
are the alternatives? Are less well understood associations im-
portant, or even essential? If so, how best is the structure of
an association net, for example, integrated effectively with the
structures of language? Does this integration require specific
new processes, or are cognitive processes already available for
other purposes adequate? Is something excluded by adopting a
denotational scheme? Does the use of a computer in principle
exclude any important features of language and of communication,
or more simply, expression in general?

The central idea in this discussion is of course that of a-
dequacy. When is a definition of language stucture adequate?
When is a definition of subject domains, or of a particular sub-
ject domain, adequate? When is a pairing algorithm adequate?
And it is hardly surprising that these questions are so complex
and so difficult to answer. The human mind is implicated in the
domain of language and the rest of reality is implicated in the
other domain. And the connection between the two involves the
most basic and universal issues of thought and action.

It seems that there are two ways of arriving at a workable
notion of adequacy. One may be described as a task-oriented ap-
proach and the other as an experimental approach. The task-ori-
ented approach proceeds from a point of view that I think is
fairly paraphrased as follows.

The important thing about language is language in
use, language to achieve an effect or a desired re-
sult. If a computer system for language "works", if
it does what we want, then that success is itself
important confirmation that we understand at least as
much language as is involved in achieving that suc-
cess. To understand is to know how to use.

- 12 -

An apparent advantage of the task-oriented approach is that it
seems to have an operational character, and operational ideas are
always in favor.

On the other hand, we may adopt a more strict experimental
approach. The goal here is to understand the structure of natu-
ral language as it really is, the structure of reality, and the
nature of the connection between them (presupposing that there is
such a connection). This will predictably be a difficult issu-e.
Language and mind are so intimately involved that there seems to
be no objective, reproducible set of experiments that can inform
us about those aspects of language that are essentially related
to mind. Distributional linguistics was conservative in this
regard. Its studies, some decades ago, consisted largely in or-
ganizing linguistic data, with careful attention to the exclusion
of subjective . >,ent and mental attitudes. At least, the de-
sirability of th. ,-clusion was kept in the foreground. Chom-
sky's advanci ir the traditional theory was to propose that

Singuistic manifest, in an observable and predictable
way, structur .. leads us to conclude first, that language is
administered t by some kind of definite, "effective" pro-
cess, and that from the manifest details of this struc-
ture we car, properly infer something non-trivial not only about
the effective processes and the agent that administers them, but
also about th v mind that is involved with them.

It is important to appreciate that modern linguistics is as
much a hard science as is any "physical" science. The apparent
phenomena of position and momentum dominate physics, for example,
along with the slightly less apparent phenomena of radiation and
electric and magnetic fields. Apparent speech signals dominate
language, along with the slightly less apparent phenomena of
cognition, feelings, attitudes, intentions, purposes and
thoughts. Physical science has its common basis in the entirely
fictitious creations called numbers, equations and deductions.
There used to be, in France, a standard meter stick. But there
never was, in France or anywhere else, a bottle with the standard
zero in it. There are no numbers anywhere in physical reality,
just as there are no equations and no deductions. These are
"useful" abstractions, helpful in organizing our description of
that part of reality that is characterized in terms of position,
momentum and other similar phenomena. The bits and pieces of our
perceptions of these phenomena are organized by arithmetic, ma-
thematics and logic. In an exactly similar way, the bits and
pieces of linguistic signals are organized into categories and
relationships that are theoretically constructed and then expe-
rimentally confirmed or disconfirmed by further direct observa-
tion, or by inference from direct observation. The bits and
pieces the linguist starts with are physical observables (the
measurables corresponding to mass, charge, position, momentum,
etc.) and his arithmetic is a greatly extended but still quite
precise system of symbol manipulations (as, of course, is the
case with the application of mathematics to the physical sci-
ences). Modern generative linguistics proposes several levels of
structure, and it is a fact that the more remote a structural

- 13 -

level is from the raw phonetic data, the more difficult it be-
comes to get agreement about verification of prediction. At ab-
stract levels of linguistic organization, one occasionally comes
to depend on an implicit feeling of recognition, a subjective
response, in order to accept the relevance of an experimental
observation.

Here, for example, are contrasting pairs of utterances which
are said to induce recognition of systematic variation in form
and interpretation.

They are harvesting wheat.
They are dazzling insights.

Revolutionary new ideas appear infrequently.
Colorless green ideas sleep furiously.

To prove that theorem was difficult.
Proving that theorem was difficult.

Those men are visiting dons. Visiting dons can be boring.
Those folks are groveling dupes. Groveling dupes can be boring.

Last night I suspected that Tabby ate the mouse.
I suspected that Tabby ate the mouse last night.

This picture was painted by a real artist.
This picture was painted by a new technique.

The escaped prisoner was caught by the gendarme.
The escaped prisoner was caught by ten o'clock.

The escaped prisoner was caught by the student union.

I found the man eating in the cafeteria.
I know the man eating in the cafeteria.

The police were ordered to stop loitering after midnight.
The police were ordered to stop patrolling after midnight.

One can see that, prejudice and habit aside, the situation is no
different in principle for the physical sciences. This is be-
cause what we choose to describe with numbers, equations and de-
ductions is arbitrarily selected.

It is of course a completely open question whether or not
there are mental structures that are not describable with refer-
ence to radiation, say, or position and momentum. And if there
are we would hardly be surprised that we cannot detect them with
the instruments of physical science. In principle, the correct
way to determine if there are extra-physical phenomena is to
formulate a neutral framework in which neither conclusion is as-
sumed, and in which external events can effect a determination.
I do not know of such a framework, but we may keep an open mind
into the future. The issue does have consequences. Fodor writes
for example that

-14-

I
...the operation of a sensory mechanism in res-

ponding to a physical property of an environmental
event is an empirically necessary condition for the
organism's perception of any property of that envi-
ronmental event.

This, as an assumption, is surely incorrect, for physically de-
termined responses can account only for physical properties, and
these only relative to a conceptual scheme provided by the capa-
city for abstraction. And in the long run we may have to extend
the scope of "sensory mechanism" so far as to make the notion
almost meaningless.

There is a third approach to the study of language, an ap-
proach which has received little or no attention to date, al-
though it may, in the long run, have considerable impact on our
understanding of human communication in general and in particular
on those communication systems that involve humans and computers.
In general terms it proposes that language may best be understood
as a process whereby mind and physical reality are integrated
together to meet some universal condition of coherence or con-
sistency. We can better appreciate the point of this proposal
when we have reviewed in more detail the serious studies of lan-
guage that have taken place in the last quarter of a century,
both in the task-oriented approach and in modern generative
transformational grammar. We will then be able to ask whether or
not this approach can be instrumented in a concrete way.

There are two deficiencies with the task-oriented approach.
One concerns the choice of a decision-making agency to decide
which tasks should be pursued. In principle, the "it works"
criterion is completely arbitrary. We find it socially unaccep-
table to allow a psychopath to exploit this principle in his
daily life. The question is, who is to decide what it is that is
to work. (We say that in a democratic society, short run diffi-
culties aside, we can count on the voice of the majority in the
long run to make proper choices. But science is not and should
not be a democratic affair. Science is socially useful precisely
because it is neutral, objective and experimentally verifiable.)
But a deeper flaw with the task-oriented approach is that it may
not ask questions that are experimentally confirmable. For ex-
ample, a sleight-of-hand artist may be observed to pick a lit
cigarette out of someone's ear. But we know on other, quite
reasonable and reliable grounds, that cigarettes cannot literally
be picked out of anyone's ear. What we conclude is that our ob-
servation in this case was in some way deficient. In an exactly
similar way, a computer system may give the illusion of under-
standing some kind of natural language, probably by virtue of its
behavior, taking the notion of behavior in a loose sense. But
our observation of this behavior, and our interpretation of it,
may not be held relevant to the understanding of naturally oc-
curring language in the absence of some kind of objective, expe-

rimentally confirmed and theoreticallly based treatment that re-
lates natural language, the biological instrument of illusion, to
the computer, the artifactual instrument of illusion. This re-

- 15-

quirement and some condition of coherence are the most basic re-
quirements of science. And it hardly needs to be said that the
task-oriented approach cannot be justified as anything more than
technology simply by a majority vote among a population of spe-
cialists. We simply have to to distinguish between types and
degrees of illusion and of reality.

If the final goal is to produce technological artifacts that
adequately execute a well-defined function, then we can say, in a
number of cases, that this goal is met. But if the goal is to
understand the role of computation, algorithms and computable
structures in naturally occurring phenomena, then computer tech-
nology has contributed almost nothing to that goal. This ques-
tion is of some importance and in the next section we will dis-
cuss it in some detail.

4. Computing as a process

In order to confirm that computation is an essential part of
a natural phenomenon we would have to make objective, repeatable
observations verifying the following criterion:

Criterion I. A structured physical object is a com-
puter if we can identify among its constituent parts
specific substructures which interact to produce re-
cognizable computations.

We can state this in a more specific way.

A structured physical object is a computer if we can
describe its structure and function in such a way
that it is seen necessarily to administer the manip-
ulation of forms, where the forms and the patterns of
manipulation meet theoretically specified conditions
of definiteness, finitude, stability, and so on.

We can sketch very briefly here the kinds of issues that are
involved in such conditions. There are conditions on the ele-
mentary objects, or atoms, that enter into computations, and on
the composite objects that have those atoms as ultimate consti-
tuents. There are primitive acts, and composite acts. In one
form or another there will be a "fetch-execute" cycle, a syste-
matic means of administering control structures - of managing
composite acts. There will be input and output mechanisms and
there will be memory. I will treat just a few of these here.
The atomic objects that enter into a computation are its
irreducibles or atoms, and it is with occurrences of these that a
computer deals. The computer may recognize no internal structure
in these occurrences of irreducibles. The computer must be able
to inspect a candidate (occurrence of an) irreducible, to iden-
tify it, to create a dstinct occurrence of it, and even to anni-
hilate occurrences. An occurrence of an irreducible must be

- 16-

bounded in extent, on all physical dimensions. Its position and
momentum must be exactly known, or at least must be known to
within bounds that are set in advance, and its position and mo-
mentum must never stray outside those bounds. If the computation
proceeds in space and time, then computational characteristics
may not depend essentially upon spatial or temporal factors. If
computation refers essentially to energetic factors, then it must
be independent of any particular quantitative energetic measures.
All relevant physical configurations must remain invariant
throughout the requisite lifetime of the computation.

Composite objects must exhibit an immediate constituency
relation. Any composite must have only a finite number of imme-
diate constituents. Composite objects must be semi-grounded -
any progression through immediate constituents must terminate
after encountering only a finite number of occurrences of dis-
tinct irreducibles. That is, the total number of distinct imme-
diate constituency relations must be finite in number. But there
may in principle be no physical bound on this number. The class
of composites must be potentially infinite. We note that this
condition is not in general expressible as a computable condi-
tion. Strictly computational steps cannot determine in a finite
way of a physical structure whether or not it is of infinite ex-
tent.

The primitive acts that a computer can commit fall into two
classes - judgments and operations. The computer must have a
means for directing its attention to specified occurrences of
objects, and it must be able to tell, of an arbitrary occurrence,
whether or not it is an occurrence of an irreducible, and if it
is, which one occurs. It must be able to generate on demand a
fresh occurrence of a specified irreducible in a time and place
distinct from those of the original occurrence of the specified
irreducible. (We note that if there are naturally occurring
computations, then this last requirement implies an organizing
principle in reality that strictly transcends space and time.)
Each primitive act must require fixed resources to be initiated,
carried through and concluded. In general, the computer must be
able to behave in a synchronous or asynchronous manner on demand.
Upon conclusion of a primitive act the computer must be able to
return its attention to where it was at the initiation of that
act. And it must be possible to make this return contingent upon
the identification of a specified occurrence of an irreducible in
a specified configuration. The computer must have accesi to a
memory whose structure remains completely fixed for the luration
of a computation, except as freely modified by the (umputation
itself.

Every general purpose computer must be able to execute any
of an infinite class of distinct algorithms, and every algorithm
must be expressible, or representable as a computable structure.
And for every general purpose computer there must be a universal
algorithm for that machine - an algorithm which accepts as inputs
representations of algorithms and inputs to algorithms, and which
interprets in a step by step way exactly those acts which the

- 17-

computer itself is capable of committing.

From these considerations we can easily appreciate that we
determine of something that it is or is not a computer not by
examining and interpreting what it does, but by inspecting its
physical, temporal and energetic characteristics. And we deter-
mine of a structure that it may or may not represent an algorithm
by determining that it is in fact implicated in a precisely de-
fined physically observable way with the activity of a physical
computer. These are the kinds of considerations we face when we
ask of something whether it is a computer, an algorithm, a com-
putational structure, or a computation.

It is clear that all grammar rules proposed so far within
the modern tradition of generative grammar are computable rules,
and it is equally clear that all the proposed conditions on con-
trol structures for administering the application of these rules
can be met by suitable algorithms. Insofar as linguistic data
confirm the reality of these computable entities they also con-
firm the existence of computational characteristics either in the
mind or in the brain, or perhaps in both. We cannot investigate
this matter in any depth here, except to make two observations.
One concerns the nature of the physical universe and the other
the nature of nervous systems. Those who are familiar, even at a
superficial level, with quantum physics will appreciate that it
is far from obvious that there can be any computers organized out
of elementary particles. And one cannot help but notice that the
organizing principles that seem to operate to produce organic
systems are in many respects similar to those that characterize a
computer. It may be the case that computers can only be orga-
nized at the classical level. But then, of course, we are enti-
tled to ask why or how the universe is organized so that inde-
terminate atomic processes when massed in sufficient aggregates
assemble themselves into agents that compute.

5. Mind, brain and computing

Direct observation to determine whether or not nervous sys-
tems meet computational conditions have not been made, as far as
I know. Experimental observation of this kind does not fall in
the province of either linguistics or of artificial intelligence
and computational linguistics. More generally, I know of no ob-
jective experimental confirmation that there are any identifiable
biological computers, even such as might be implicated in the
structures and processes of language. Analogies between brain
and computer are so loose and superficial as to be scientifically
meaningless. It is true that organized neural nets can be sys-
tematically related to behavior, but it is also true that the
function of these nets is affected in essential ways by electri-
cal, chemical and even possibly mechanical processes that are
continuously graded. These are simply not digital events. The
reality appears to be that the brain is so intimate a blend of
digital and non-digital processes that important and even funda-
mental issues may be ignored by focusing exclusively on the di-
gitally computed aspect, if there is one. Much is made of the

-18-

all-or-none character of the neural firing event, but there are
distinguished neurophysiologists who question its importance.

the role of impulses in the central nervous
system in representing and transforming information
has seldom been established and is nowhere investi-
gated to a satisfactory degree of completeness.
Moreover, several kinds of evidence, although some-
what indirect, point strongly to the importance of
other, nonimpulse vehicles for carrying information
in the brain according to their corresponding coding
schemes; the importance of such nonimpulse codes may
well surpass that of the 'classical' nerve impulse.
S.. The suggestion has been made and must be enter-
tained seriously that it is the impulses that are
best regarded as the epiphenomena (at least in some
parts of the central nervous system) and that only
through understanding the properties and interactions
of the electrical waves with the anatomical substrate
will we arrive at a satisfactory understanding of the
higher behavioral and mental processes." (Perkel,
19691

And speaking from the point of view of a specialist in sensory
research, Ragnor Granit writes "Whatever the nature of the cen-
tral mechanisms, they must be capable of interpreting the fre-
quency code". [Granit, 1955]

It might be suggested that digital computer: :-dn e-..ly be
prepared to compute approximations, to any degrei -t acci:1%Vy, of
continuous structures, but if this were the case the problem of
explanation would still be ur.solved. We would then need to
understand how and why organic tissue should evolve in such a way
that it tries to construct digital approximations to continuous
phenomena. And even in general terms , there are serious issues
connected with the effort to locate a computing device in the
brain. In the first place, organic tissue, and this is as true
of brain tissue as of any other living material, is never the
same from moment to moment. Even those structures which are
directly involved with membrane currents are constantly changing,
are undergoing a continuous process of breakdown and reconstruc-
tion. And in the second place, even at the level of abstract
thoughts, the accumulation of experience induces a different
continuous progression in both mental and biological structures.
Whatever physical invariants we might find in the brain, they are
almost certain to be found only at relatively macroscopic levels
of neural integration. No matter how widespread the current view
to the contrary, it remains a scientific fact that there is at
present no direct experimental evidence that there is anything
even resembling a digital computer at any significant level of
organization in the brain.

-19-

I have devoted some space t., this issue in order to streng-
then the suggestion that an investigation of natural or biologi-
cal systems, to determine exactly how they compute whatever it is
they compute can only be of value to us in understanding how to
make the most out of computing instruments. When compared with
human technology, biological systems have been enormously suc-
cessful in representing their environments and in responding to
them in meaningful ways.

6. Computability in Grammar

Generative linguistics provides a scientific and experimen-
tal point of view for the study of language, and derivatively for
the study of the mind. Observable speech signals and manifest
regularities in those signals provide the data for linguistic
studies. These regularities are easily detected in the various
speech signals produced by an individual, and also in the speech
signals produced by fairly large classes of individuals. At the
very least, generative linguistics provides a framework for the
organization of these data. And to the extent that the unpreju-
diced observer finds this organization compelling, he will be
prepared to accept the assumptions about natural language that
constitute this framework.

One very basic assumption is that the linguistic capacity is
intrinsically organized for computation, in important respects if
not in all respects. Grammar rules are typically written as Post
productions, and such constraints as are placed on the order of
application of such rules are clearly computable. As a conse-
quence of this assumption we have the further assumption that in
the individual, this organization can be expressed at an idea-
lized and abstract level by a finite set of rules (Post produc-
tions) which specify in principle a certain competence in lan-
guage. An agent is competent at a language if that agent is able
to distinguish by appeal only to those rules, those "forms" that
are admitted by the rules from those that are not. [Chomsky,
1957, 1965, 1968]

In broad but accurate terms, then, competence in language is
expressed by two things - a finite set of rules, and a mechanism
for the administration of these rules. In generative linguis-
tics, one states these rules as Post productions, as operations
on symbol strings. These operations must include primitives to
recognize whether or not two substrings are the same, to delete a
substring and to insert a substring. And they must include a
means to fix attention, arbitrarily, on specific strings and
substrings, in order to make possible the stable realization of
the operations. One might think this a restriction. There are,
after all, several other formulations of the theory of computa-
tion. We have Church's lambda calculus (Church, 19411, Turing
machines (Turing, 19371, the equation calculus [Kleene, 1936],
Schoenfinkel's system of combinators [Schoenfinkel, 19241, and
others. And foremost among them all is the logic of truth-func-
tions, predicates and quantifiers - first order logic.
Well-known fundamental theorems establish that each of these

- 20-

theories is equivalent to each of the others in well-defined and
important senses. But Post productions [Post, 19431 and Turing
machines have a unique status. Neither of them is defined to
accommodate any abstract system of objects and operations.
Church's lam'bda calculus has as models domains of functions and
the notion of functional application. The equation calculus is
concerned with inductive definition and computation. The "feel"
of a Turing machine is that it commits physical acts upon a phy-
sical environment. (It makes marks on a tape, erases such marks,
and moves its read/write head back and forth across its tape.) In
all other formulations the fundamental operation is that of sub-
stitution - to replace a specified occurrence of an expression
with an occurrence of some other specified expression. Post
productions realize this substitution on symbol strings, while in
the other formulations the operation is more abstract, and is
supposed to apply to syntactically specified complete expres-
sions. Post productions are minimal in the sense that they make
no assumptions about the uses to which symbol strings are put,
and they do not assume that the operations are to be realized as
physical acts, as does a Turing machine.

With respect to the computing agent that underlies language,
generative linguistics says nothing at all except that ordering
of rule application seems to be a reality. Certain rules may
only be applied once, certain of them must be applied before o-
thers, and certain sets of them may be applied repeatedly, in
order, in a cyclic way.

Here is a synoptic description, such as a generative lin-
guist might propose, to "account for the organization he finds in
linguistic data. The competence that a normal human being mani-
fests in his use of his native language is idealized as a set of
interacting components. These communicate with each other by
generating and manipulating certain well-defined structures. In
every case both the structures and the patterns of manipulation
must meet constraints that identify them as computational struc-
tures and computational processes. There is a "lexical" compo-
nent that accounts for the properties of words and word stems and
for some of the relations and associations that appear to hold
among words. It also incorporates information that accounts for
observed occurrences of these words in linguistic structures.
For example, "fellow" is marked in the lexicon as a noun, as an
animate noun, a count noun, and as indicating the feature "hu-
man". These markings exclude from the class of grammatical sen-
tences such sentences as

We should fellow that fence.
That wasn't much fellow.

The fellow excused herself and left.
That fellow took off its hat.

Further, for the sentence "This feljow believes himself to be a
genius." "this" is marked as a determiner, and as singular.
"Genius" is marked as a noun, as singular, as animate and as
conscious. "Believes" is marked as a verb, as in the third per-

- 21 -

son, as singular, as present tense, as taking a conscious sub-
ject, and as having a complete assertion as object. But there
are other constituents for a lexical entry. A distinguisher in-
corporates the idiosyncratic material for a lexical entry, that
material which will have no effect on grammatical processes. For
example, the lexical entry for "ball" will include the category
"Noun", the grammatical feature that it is a concrete noun, the
semantic feature that it is a physical object, and the distin-
guisher that it is used in sports, entertainment, and so on.
Once these lexical items have been inserted at the terminal nodes
of a structural description provided by the categorial component,
a set of projection rules is invoked to associate amalgamations
of the semantic information found in the lexical entries with the
non-terminal nodes of the tree representing the structural de-
scription. One infers that there would be a distinct projection
rule to accompany each production rule in the categorial compo-
nent. Chomsky later organized grammatical features into "complex
symbols" which conditioned the possibility of lexical insertion
in structural descriptions, a conditioning that took into account
other lexical insertions into the same structural description.

In the "base" component there is a phrase-structure compo-
nent that represents the form of elementary, primitive or minimal
assertions.

The man has a dog.
We are fast.

Yumyum loves Wally.
She lost patience.

There is a transformational component that accounts for some of
the complexity of actually occurring expressions and for the re-
lationships that obviously hold among certain sets of different
expressions. All the following, for example, are closely re-
lated.

That fellow was computing sums.
Sums were being computed by that fellow.

Who was computing sums?
What was that fellow computing?

What was that fellow doing?
That fellow's computing sumsThe computing of sums by that fellow ...

And there is a morphophonemic or phonological component that ac-
counts for preparing an expression for utterance as a sound pat-
tern.

One also specifies a "semantic component", say, one which
associates in an orderly way a "reading" with each deep struc-
ture.

For example, so called "projection" rules will project a
semantic "reading" from the lexical items "up" through more com-
plex constituents of the expression. For "Eddie gave his little

- 22 -

doggie some yogurt." the "little" and "doggie" will be "combined"
by a projection rule to give a reading for the phrase "little
doggie", and "some" and "yogurt" will be combined to give a
reading for "some yogurt". The particular combination rule used
will be determined by the grammar rule that generated the phrase.
From the readings for the phrases "Eddie", "gave", *his little
doggie" and "some yogurt" the reading for the complete sentence
will be obtained.

Five kinds of linguistic forms appear in this description.
The phrase-structure component generates (computes) skeletal
structures which specify the forms of simple assertions. The
lexical component inserts lexical items into these skeletal
structures at specified positions, providing what is called a
"deep structure". The transformational component turns deep
structures into "surface structures", which are then manipulated
by the phonological component to produce nearly utterable matri-
ces of sound specifications. And the semantic component associ-
ates a "reading" with each deep structure. Within this frame-
work, all decisions about the forms of particular rules and about
the order of rule applications are referred either to linguistic
data, or to considerations of simplicity and economy of
theoretical assumptions. Thus there is a phrase structure pat-
tern, a deep structure, a surface structure, a phonological shape
and a "semantic reading".

Consider, for example, the sentence "That fellow believes
himself to be a genius." The categorial component will generate
the following,

((Det Noun) (Verb ((Det Noun) (Verb (Det Noun)))))

from the rules

Sentence -> Nounphrase Verbphrase
Nounphrase -> Det Noun
Verbphrase -> Verb Nounphrase
Verbphrase -> Verb Sentence.

Lexical insertions will then produce the structure

((That fellow) (believe ((that fellow) (be (a genius))))),

and after a number of applications of grammatical transformations
we have

((That fellow) (believes (himself (to be (a genius))))).

These components and the mechanism which integrates their
handling of linguistic structures may be called the "language
generator". According to the most basic assumption, this gener-

-23-

ator acts in certain essential respects like a computer. This
observation has important consequences, but in order to state and
appreciate those consequences we will have to consider further
some fundamental aspects of computation.

7. Abstract Theory of computing

The centerpiece concept in computability theory is the no-

tion of a computation. A computation is a finite sequence of
states, each of which is related to its immediate predecessor in

the sequence in a definite way by exactly one of a finite number
of rules. A state is a definite and orderly arrangement of a
finite number of occurrences of irreducibles. A theory of com-
putation is made more explicit by giving, to a suitable degree of

definiteness and exactness, clarifications of the concept of a
rule (relating states) and of the concept of orderly arrangement,
and perhaps of how the process of transition through a sequence
of states is controlled. A definition of a particular computing
system must specify a class of structures which count as states
and constituents of states, and must specify in all essential
respects what a rule is and exactly what state is produced as a
result of applying a rule to any specified state.

From this point of view a computing theory is a pair [S, R],
where S is a class of structures and R a finite set of rules. S

is of course itself a complex system. It includes a family of

predicates which can listinguish among distinct computer struc-
tures, a family of selectors which can pick those structures a-

part, and a family of constructors which can assemble new struc-

tures out of given ones. If an application of some rule in R

turns a state sl into a state s2, we indicate this fact by writ-

ing

R:sl -> s2

If some finite number of applications of rules in R turns a state

sl into a state s2 then we write

R:sl ->> s2

Some rule systems have the property that given any state, at most

one successor state is determined by the rules. That is, at most

one rule applies in exactly one way to any given state. Such a
rule system is deterministic or monogenic. The contrasting terms
are polygenic and non-deterministic. Itfa sequence sl, s2, ... ,

sK is a computaF-n, we call sl its initial state and sK its
final state. If there is no state sO distinct from sK such that
RTsW -> sO, then sK is the ultimate state of the computation slI,
s2, ... , sK. We note that the structures used to organize states

need only meet very specific conditions of definiteness, recog-
nizability and stability (at least throughout a particular com-
putation). And therefore, rules need only meet the same kind of

conditions of exactness - it must be obvious that the application
of a rule always produces the same definite, predictable and re-

cognizable result. These rule systems determine how the computer
-24

acts no matter what program or what data structures it surveys.
A particular pattern of rule applications may be specified ex-
ternally. Such a pattern is called a program, and it must be
possible to express any of an infinite class ot programs to any
particular general purpose computer. That is, among the compu-
ter's structures, some will be recognizable by the computer as
patterns of rule applications.

In order to speak systematically about the use of particular
computations we introduce two further constructions. There is a
function geninitial which takes as arguments a pair of struc-
tures, one representing a program in the language for the com-
puter system, and the other an input to that program. And we
have a function outcome which, when applied to an ultimate state
produces a structure occurring in some specified position in that
ultimate state. geninitial is a "constructor" function, and
outcome is a "selector" function.

Suppose now that f is a function of any kind, whose domain
is A and whose range is B. We imagine that some functions can be
computed and that some others cannot. Thus we need a definition
that determines under what circumstances a function is computa-
ble, according to a particular computer system [S, RI.

The function f:A -> B is [S, RI computable if there
is a program p, and a representation function
rep:union(A, B) -> S, such that f(x) = y if and only

geninitial(p, rep(x)) ->> Y

where Y is ultimate and outcome(Y) = rep(y).

We notice that without the function rep it is nearly imossible to
speak of a function's being computable by a particular computer
system. It may be possible to define the class of computable
functions in some other way, but to define computable relative to
a particular computer system seems to require a well-defined
representation function.

With these background developments we are now in a position
to make some observations.

If we have observed a physical process from its inception to
its conclusion, we do not imagine that we have characterized the
process solely by describing its outcome. If the outcome of such
a process is the sum of two numbers, we may not then infer that a
digital computer was responsible. Any general purpose computing
agent can do arithmetic, but we have no a priori grounds for as-
serting tht only computers can do arithmetic. To tell of a pro-
cess that it is a computation, or that it is in important res-
pects a computation, we must first determine that in relevant
respects that process can be analyzed into a finite sequence of
discrete states. Then we must determine that these states are
digitally structured in a systematic way. Then we must determine

-25-

that consecutive states in the process are related in a systema-
tic (rule-governed) way. Then and only then may we conclude that
it is an CS, RI computation, where S expresses the orderliness in
the state structure, and R the orderliness in the state transi-
tions.

But on the strength of these observations alone we are still
not justified in concluding that any particular computable func-
tion has been involved. If we want to say that the process is a
computation "of" some particular thing, a computation "of" a
particular function, then considerably more is needed. First it
will be necessary to recognize a certain kind of orderliness in
the function which we believe has been computed. Then we will
have to have a convention that such structure is represented in
precisely specified computational forms. We will have to recog-
nize that the initial state of the process could in principle
have been constructed by some version of geninitial, and that
outcome applied to the ultimate state would yield the result.
Indeed, we would have to recognize the ultimate state itself as
terminating the process. All these conventions are matters of
interpretation, and contribute in no essential or even interest-
ing way to the bare notion of a computation.

A complete characterization of computing specifies a well-
defined set of forms, a well-defined set of programs, and a
well-defined set of computations. From the point of view of
computing alone, the forms are uninterpreted, and the programs
have no meaning except as form manipulations. And a computation
is entirely without meaning except as a record of the actual
carrying out of the complex form manipulation specified in a
particular program. In short, computation is the meaningless
manipulation of uninterpreted forms.

A computation proceeeds according to specification whether
or not this specification accords with any expectations that
might be part of the interpretations we place on the structures
and programs that determine that computation. There is no place
in this picture for preferential systems or value judgments. We
judge one computation to be good and another to be not good on
the basis of our own interpretation of it, together with other
subjective and social considerations. We cannot define, solely
with reference to the manipulation of forms, such complementary
notion pairs as good/bad, right/wrong, sad/happy, cruel/kind, e-
lated/depressed, calm/agitated, belief/doubt, greed/generosity,
ennui/interest, and so on. Form manipulation cannot itself be
said to be humorous, nervous, hopeful, deluded,. gentle, aggres-
sive or shy, despite a certain human disposition to find pleasure
in puns.

Even the concept of causality is not easily related to com-
putation. Since computation can be realized by any of a variety
of physical mechanisms, computatiop is independent of any par-
ticular aspect of physical reality. Therefore, the existence in
nature of computations would imply the existence of some non-
causal agency or principle which directs that uninterpreted form

- 26 -

manipulations unfold sequentially according to rule. The sole
function of computation is the sequential, rule-governed unfol-
ding of form manipulation.

Before we return to a discussion of grammatical and lin-
guistic ideas we pause for one very fundamental observation. The
idea that a class of phenomena manifests computational properties
is only significant if there is an alternative. It must in
principle be possible for matters to be otherwise. Our under-
standing of computing is deepened and enriched by the formal
studies from the decade of the nineteen thirties, and by such
studies as those that relate logic and computing more intimately
(Robinson, 19791, (Kowalski, 1979], and those that attempt to
describe computing in strictly abstract mathematical termsrScott,
1970]. But these theoretical studies are important in part be-
cause they draw a distinction, a distinction between what is
computable and what is not, and this distinction may be of con-
siderable importance. Linguistics, artificial intelligence, and
even broad areas of modern cognitive psychology rely essentially
for theoretical constructs and for experimental methodology on
the concepts of a computer, a program and a computation.

In these cases it is scientifically and intellectually in-
admissible to ignore fundamental aspects of computational ideas.
The assertion that "the line between a computer and a non-compu-
ter need not be sharply defined" represents nothing more than a
decision not to ask certain questions, and to ignore discussion
of certain issues. (Putnam, 19791 What would we think of a phy-
sicist who said that the line between states of motion and states
of rest need not be sharply defined? A decision to remain unin-
formed about central concepts is unjustifiable on any basis.

If the concepts of computing are to be significant in ex-
plaining physical processes then there must be alternatives.
Fields are physical systems which are not digital or computa-
tional in form. Waves such as are described by the Schroedinger
equationsa are not digital in form. Much, in fact, of what phy-
sical science describes at the classical level is not in compu-
table form. It is quite reasonable to ask whether computational
structures and processes develop in some orderly way out of non-
computable substrates, and if they do, what agencies administer
this development. And what physical principles affect such de-
velopment? And what is the relation between physically manifest
causality and the sequential unfolding of a computation?

8. Interpretation in Grammar

We are now in a position to appraise the idea of interpre-
tation in the theory of grammar. We have seen that a computa-
tional transaction is entirely void of interpretation or meaning
except as the orderly manipulation of forms. If we choose to
place any interpretation, any meaning, in a systematic way, on
each of a specified class of computational objects, we may have
to be prepared to make use of non-computational structures and

- 27 -

processes. Within the generative tradition in linguistics there
have been two major proposals for ! >ating grammatical structures
to meanings. One has been called interpretive semantics" and
the other "generative semantics". We can grasp the supposed
difference in the following way [Chomsky, 19711. A generative
grammar for a language specifies for each grammatical utterance
in that language a finite sequence P1, P2, ... , PN of structures,
which are more definitely called "phrase markers". Any such se-
quence must meet three conditions. (1) PN is a "surface struc-
ture", which means that only morphophonemic rules may be applied
to it. It is, in a certain sense, an ultimate grammatical
structure. (2) For each i, Pi and its immediate successor are
related by one of a finite list of transformations, functions
which map phrase markers to phrase markers. (3) There is no P0
such that P0, P1, ... , PN meet conditions (1) and (2). The
interpretive semantics position is that P1 is generated by the
categorial or phrase structure component of the grammar, and that
for some I, P1, ... , PI are obtained solely by lexical transfor-
mations, rules that insert lexical items into the output of the
categorial component. And then all phrase markers after PI are
obtained solely be non-lexical, grammatical transformations.
This PI is called the deep structure. Deep structures determine
semantic representation, express grammatical relations, and re-
flect constraints on co-occurrence of lexical items. And the
deep structure determines the surface structure by way of the
system of grammatical transformations. The surface structure PN
in turn determines the phonological shape of the utterance.

The generative semantics position is that there is no deep
structure, and that there is no distinct semantic component which
maps deep structures to meanings [Lakoff, 1971, 1972]. It holds
that lexical and transformational processes are intermingled, and
cannot in principle be separated out in the way described by the
interpretive position. For this view, all the semantic informa-
tion which the interpretive position provides can be as well
supplied by allowing lexical and grammatical transformations to
be freely applied, in systematic ways.

Another way of drawing the distinction is to say that for
the interpretive view, the rules that associate a semantic
"reading" to an expression are of a fundamentally different kind
than are those rules that carry out lexical and grammatical pro-
cesses, while the generative semantics view holds that only
transformations are needed. Although the "projection" rules
which the interpretive view provides are different in kind from
the grammatical rules, they must still meet quite specific con-
ditions of precision, definiteness and finiteness. If we under-
stand "generative" to mean "computational" as I think we must,
then the difference between interpretive and generative semantics
is a difference in choice of computable structures and in the
organization of the effects of different computing systems. On
the other hand, if the projection rules envisioned by the inter-
pretive view are understood to include structures and processes
that may not meet the computational conditions of exactness, de-
finiteness, invariance, and so on, then there is indeed a funda-

- 28-

mental difference. Within modern linguistics I am aware cf no
proposals for non-computational structures and rules for the se-
mantic component, but Chomsky has commented on the notion of eeep
structure and on the relation between syntax and semantics that

No area of linguistic theory is more veiled in ob-
scurity and confusion, and it may be that fundamen-
tally new ideas and insights will be needed for sub-
stantial progress to be made in bringing some order
to this domain rChomsky, 19711.

One may try, of course, to determine whether linguistic data
provide any evidence bearing on the question whether the semantic
component of a grammar is realized in terms of computable struc-
tures and processes that have forms distinct from those asso-
ciated with the other structures and processes of the grammar.
The active debate between the interpretive and the generative
proponents in fact reports these efforts. But this much we can
say, whatever the outcome of that debate. Insofar as semantic
factors are incorporated into a grammar, either by means of
transformations, as the generative semantics view holds, or by
means of projection rules of a different kind, as tbe interpre-
tive view holds, any question of "irterpretation" in its conven-
tional mathematical sense is moot, because, as we have seen,
computing is the meaningless manipulation of purely uninterpreted
forms, and given the generativity assumption, the same can be
said of any orderly system of phrase markers, semantic readings
and phonological shapes. Insofar as meanings refer to goals,
purposes, preferential judgments, attitudes, emotions and so on,
some extra-grammatical non-computational agency must necessarily
be involved.

9. Structure of mental images

In the light of this discussion we can make a justified
generalization. The conceptual boundaries of a generative (com-
putational) description of language delimit that aspect of human
mental activity that is void of meaning, at least to the extent
that meaning is related to interpretation in the usual sense in
which a "formal system" receives an interpretation. And if one
takes seriously the task-oriented studies in artificial intelli-
gence, including "computational linguistics", the same may be
said of them. Insofar as meaning is implicated with values,
judgments, purposes and attitudes, the effect of an adequate ge-
nerative (computational) description is to determine, at least in
part, where we need not look for meaning.

Another question of interest may be put quite simply. Who
writes these linguistic programs, these systems of rules? Who
decides which programs to write? We note that this question is'
not answered by referring in some free form way to the biological
notion of evolution or natural selection. Natural selection is
not concerned with the manipulation of pure, uninterpreted form.
It is quite value ridden. Survival, the enhancement of the ca-

-29-

- - 11j ! I

pacity to regenerate, is a matter of preference, and we may ask
why there is a preference. (Note that it doens't matter who or
what "has" the preference.) If we say finally that things are
simply the way they are, we are then only deciding not to orga-
nize the data of nature in any significant detail.

Other questions arise in connection with the notion that the
mind deals with computable structures. One concerns the nature
of mental imagery, another the nature of memory, and another very
important issue concerns the way in which information is trans-
mitted into the mind. The concepts of attention and awareness
play an essential part in all these issues and it may be neces-
sary to relate them in a systematic way to the mental computer if
there is one. In addition we recognize that there are a variety
of other human mental activities which make use of facilities
that appear in language processes, facilities such as imagery,
memory, articulation, and the distinction between deep and sur-
face structure. And the whole range of psychopathologies that
can and do affect mental life must be systematically related to
the array of mental functions that constitute the human norm.

Consider, for example, the situation in which an individual
perceives a set of objects organized into a situation. It is
taken for granted that initial information processing stages in-
volve the external sense organs which are characteristically
stimulated by physical signals originating in the environment.
These stimulations are then transmitted through afferent pathways
into the central nervous system, and in the course of this
transmission may undergo structural transformations about whose
nature, extent and purposes we can presently do little more than
speculate. We further imagine that somewhere and somehow in the
higher brain centers the upshot of this transmission - transfor-
mation activity stabilizes in perception. For example, as a
consequence of an elaborate system of expectations, complex neu-
ral events, and a rich substrate of visceral and chemical events,
we perceive before us an aromatic, medium-rare roast of beef.

There are two difficulties in connection with relating this
complex process to the mental computer. In the first place we
have no experimentally verifiable reason to think that these
signals, at any interesting stage of neural processing, are di-
gital signals. They are digital, of course, with respect to the
anatomical specificity of the neural pathway itself. We do not
know in what way this anatomical specificity bears on the signals
transmitted,, except that it does provide a physical source for
electrical field effects, and an origin for a variety of chemical
processes. And second, we have no explicit description whatever
of the relation between sensory stimuli and perceived entity.
Langer has expressed this issue quite cir'rly.

No matter what heights the human mind can at-
tain, it can work only with the organs it has and the
functions peculiar to them. Eyes that did not see
forms could never furnish it with images; ears that

- 30 -

&i

did not hear articulated sounds could never open it
to words. Sense-data, in brief, would be useless to
a mind whose activity is "through and through a sym-
bolic process, were they not par excellence recepta-
cles of meaning. But meaning, as previous consider-
ations have shown, accrues essentially to forms.
Unless the Gestalt psychologists are right in their
belief that Gestaltung is of the very nature of per-
ception, I do not know how the hiatus between per-
ception and conception, sense-organ and mind-organ,
chaotic stimulus and logical response, is ever to be
closed and welded. A mind that works primarily with
meanings must have organs that supply it primarily
with forms [Langer, 19421.

The structure of mental imagery has received attention from
experimental psychologists in recent years, but their findings
are not conclusive [Anderson, 19801, [Kosslyn, 1978]. There are
propositional theorists and imagery theorists. Roughly speaking,
the imagery theorist holds that the entity associated with a
thought or memory is "analogue" information. There are three
aspects to this assumption. One is that the mental entity be-
longs to a population on which a metric is definable. More
exactly, these entities form a dense space. Density means that
between any two arbitrarily close entities, El and E2, there will
be a third, Em, such that Em is nearer to each of El and E2 than
El is to E2. That is, the space of entities admits the specifi-
cation of neighborhoods, subsets of entities which are all simi-
lar in respects determined by the way the neighborhood is speci-
fied. If a neighborhood is specified with respect to outline,
colour and texture, then all objects in a sufficiently small
neighborhood will have sufficiently similar outlines, colours and
textures, although they may differ dramatically in other res-
pects. Secondly, analog images are images of something else, and
they are icons of what they are images of. That is, there is a
structural isomorphism between the image and the thing imaged, in
selected respects. However the detail of the image space is
theoretically represented, small changes in the thing imaged will
correlate with similar small changes in the image. Things which
group into the same sensory neighborhood will group into the same
neighborhood of images, relative to the appropriate choice of
aspects. Finally, the analog images fetched out of memory can be
processed by the same mechanisms that are recruited for proces-
sing perceptions in a similar modality.

The propositional theorist holds that these mental entities
are found in discrete associative networks, in assertional or
logical data bases, or in some other classically computational
form. In any case, there are essential rules of well-formation
associated with these structures, and the units of such struc-
tures can be described, in one or another way of reading them, as
being "true" or "false" readings of reality.

-31 -

. F" I . . . lt L . .

Anderson has observed that it is not possible to evaluate a
theory of mental representation unless that theory describes both
the structures of the mental representation and the processes
that will deal with those structures. tKosslyn, 19801, make the
suggestion that digital and analog structures may be processed
simultaneously.

There appear to be a number of possibilities. One is that
mental images are discrete and are handled by continuous or gra-
ded processes. Another is that images are iconic but are pro-
cessed by digital mechanisms. A third is that mental images take
on a finite and digital character as the result of complex inte-
grative processes involving a number of distinct dense and graded
substrate. This latter is not so far fetched a suggestion as it
seems. Elementary particles are described by the Schroedinger
wave equation as having continuously varying properties, proper-
ties which discretize to definite values when the particles in-
teract with a suitable measuring apparatus.

In any case, the literature in experimental psychology does
not justify any definite conclusion about the structure of mental
entities. In particular, we do not know whether these are orga-
nized as digital structures, or as points in a continuous space.

I will make no further reference to the task-oriented ap-
proach to the study of language. We will take the framework
provided by the theory of generative transformational grammar as
a universal framework for the study of language, and for the
study of possible ways of implicating linguistic processes in
computing. The reader who is interested in such an exercise can
easily verify that all studies in computational linguistics that
have led to implementations exhibit in one form or another all or
almost all the components of a generative transformational gram-
mar. There are lexical items and lexical insertion rules, a ca-
tegorial component or an equivalent, and a system of transforma-
tions leading to a surface structure, the form that is provided
by or analyzed by the system. And in all cases there are more or
less rich deep structures associated with linguistic expressions.
Precise conceptual boundaries are sometimes blurred, and there
are a number of techniques to make the system functional in a
strong utilitarian sense. A variety of forms of knowledge bases
are to be found, each with its characteristic set of functions
that relate expressions to the underlying meanings that are re-
corded in the kr owledge base.

10. Mental structures in grammar theory

It may be helpful to exploit here a certain kind of under-
standing of the constructions in generative transformational
grammar (hereafter, 'GTG'). These remarks are subjective and
motivational, and there is at present no claim that experimental
verification is attainable to support them, either now or in the
future. In short, all empirical, operational and utilitiarian
issues are irrelevant to these remarks. On the other hand, in-
trospection and reflection may or may not be experienced to con-

- 32 -

.

firm the validity of these observations. In an informal way, we
will simply be trying to deepen our understanding of the struc-
tures and processes of natural language. I will use such phrases
as "psychological reality", "significance", "relevance" and
"meaning", to mention a few, without attempting definitions. The
truly interesting questions about GTG are concerned with whether
or not its precisely defined structures and processes confirm
judgments about significance, relevance, psychological reality,
meaning and other subjective notions.

The base component of a GTG is expressed in part as a finite
list of context-free phrase-structure rules, whose application
generates a phrase-structure tree or structural description. The
individual symbols that occur in these rules are called "catego-
ry" symbols. There is one distinguished category symbol which
generates a primitive or elementary expression, usually a sen-
tence. We may understand such a sentence as expressing the
simplest kind of complete thought, and only the simplest kind.
The category symbols that appear in these rules have one very
basic function, and that is to express grammatical relations a-
mong the constituents of the complete thought. For example, if
there are rules

<sentence> -> <noun phrase><verb phrase>

<verb phrase> -> <verb><noun phrase>

which yield a terminal sequence

<noun phrase> <verb> <noun phrase>

then we can say precisely that the first <noun phrase> is the
subject of the <sentence>, and that the second <noun phrase> is
the object of the <verb phrase>. Notice that the category <verb
phrase> is abstract - it is not manifest directly in the terminal
sequence. Therefore, grammatical relations may be expressed with
reference to purely abstract categories. It is the phrase-
structure rules which determine and express these grammatical
relations, and this determination is made independent of whatever
lexical items (words) are subsequently put for the <noun phrase>s
and <verb>. This explanation is a psychological statement. It
asserts that the constellation of objects that will figure in a
simple complete thought are constrained (by the phrase-structure
rules) to stand in certain grammatical relations when that
thought is expressed in language. Distinct patterns of gramma-
tical relationships will require distinct patterns of rule ap-
plications. The important point is that insofar as such rules
are seen to underly linguistic expression, the thoughts so ex-
pressed are structured in part without regard to their particular
content. In short, a certain structure is imposed on the simp-
lest complete thoughts solely with reference to uninterpreted
form. A category symbol has no intrinsic significance other than
to indicate a class of objects each of which can stand in certain
grammatical relations.

- 33 -

We can also see that there is no reason to suppose that a
complete pattern generated by these rules needs to be generated
in any particular serial order. We may even imagine that the
whole pattern is generated simultaneously. We may observe that
all and only the patterns generated by a context free phrase
structure system can also be generated by a pushdown automaton,
but for natural language we need not specify that they are so
generated. So long as the immediate constituency relations are
uniquely specified, we have all that is needed to determine
grammatical relations. The way in which a phrase structure tree
is actually generated is a matter for factual determination, and
at the present time there does not seem to be any objective way
to decide how a biologically normal human being generates his
phrase-structure trees, indeed, even assuming that he does so.

We also see that the categorization of those entities that
will be constituents of a complete thought is quite universal and
comprehensive. If every well-formed uttterance has an underlying
phrase-structure pattern expressing grammatical relations, then
all concepts that can figure in an utterance must submit to such
categorization, and this is to be independent of the content or
significance of such concepts. All thought that is expressible
in language derives in part from a categorial organization, an
organization that expresses uninterpreted form-al relationships.
These are deep and subtle observations about mental events.

Not all expressions and not all thoughts are simple. In the
earliest formulations of generative transformational grammar
(henceforth - GTG), this phrase-structure system had no recursive
capability. In these early formulations simple thoughts were
generated independently by the phrase-structure component, and
were then combined by a recursive capability expressed in a sys-
tem of transformational rules which took several phrase markers
as arguments and yielded more complex single phrase markers as
values. But by 1965 this idea was abandoned (Chomsky, 19651.
The role of the transformational component came to be concerned
with the purely mechanical rearrangement of arbitrarily complex
phrase markers into a surface structure suitable for articulation
through the phonological component. The phrase-structure compo-
nent was given just one recursive symbol, that for a simple com-
plete sentence, so that the patterns or phrase markers generated
by it might contain an arbitrary number of simple sentences. The
organization of the form of a thought, simple or complex, was
localized in the generation of these phrase-structure patterns,
and the grammatical transformations were then understood to have
little or no link with the origin of thoughts. They were, and
are, exclusively concerned with the rearrangement of uninterpre-
ted syntactic forms. The transformational component of a grammar
is "autonomous and independent of meaning." The simplified pic-
ture that emerges at this stage is that thoughts are organized in
categorial terms as phrase-structure patterns, in order to ex-
press grammatical relations. Transformations then apply to these
patterns in order to make them articulatable according to syste-
matic and language-specific phonological principles. And in some
sense to be made precise, grammatical relations must either be

- 34 -

unaffected, preserved, by transformations, or else those rela-
tions that are expressed by the phrase-structure patterns must be
recoverable from the surface structure.

So far we can see that both the categorial and the trans-
formational component are concerned exclusively with the form-al
manipulation of uninterpreted structures. We have given no ac-
count whatever of the introduction of specific words or word
stems into linguistic structures. For this purpose a lexical
component is introduced.

"A generative grammar attempts to characterize in the most
neutral possible terms the knowledge of the language that pro-
vides the basis for actual use of language by a speaker-hearer."
In the present discussion I understand the phrase "most neutral
possible terms" to mean that grammatical description refers
solely to linguistic forms and to the processes that manipulate
those forms. Thus a generative grammar provides a description of
the forms and form-al manipulations that a speaker-hearer uses to
relate sounds with meanings. We have seen that the forms pro-
posed by current theories of grammar include phrase markers of a
variety of kinds, lexical entries, and some kind of semantic
structures, and that the form-al manipulations include phrase
structure rules, transformations, lexical insertion rules, rules
that associate semantic structures with phrase markers or sets of
phrase markers, and rules that associate sound patterns with
phrase markers. All rule systems that have been proposed to as-
sociate semantic structures with phrase markers make important
assumptions about the existence and form of lexical entities and
about the rules which incorporate lexical entities into phrase
markers.

11. Lexical and categorial structures

Katz and Fodor tKatz, 19631 proposed that a lexical entry
was to contain a grammatical category, a set of grammatical fea-
tures, a set of "semantic" features, and a distinguisher. A
grammatical category is one of such as: Noun, Verb, Pronoun,
etc. Grammatical features include such contrasts as count/mass
and animate/inanimate, and other features indicated by such words
as: young, colour, social activity, and a large number of o-
thers.

The lexical component of a grammar organizes the words of a
language into classes or categories and among these categories
are those that appear as terminal elements in a phrase-structure
pattern. Lexical insertion is then the processwhereby words are
incorporated into specified positions in a phrase-structure pat-
tern. A phrase-structure pattern, all of whose terminal nodes
are words, is a deep structure. A deep structure expresses a
complete (simple or complex) thought.

The individual words may have a number of important fea-
tures. Some of these concern the sound pattern that will even-
tually express the word. Others may concern transformations that

-35-

rearrange phrase markers containing these words. Yet others
concern the possibility of inserting the word into the phrase-
structure pattern in a way that satisfies specified conditions
determined by the pattern.

The psychological picture here is that complete thoughts are
assembled out of already clearly differentiated constituents.
The mind is supposed to be in tacit command of a dictionary full
of concepts and ideas, ideas which are susceptible to composition
and arrangement in a way that is reflected in conventional no-
tions about word meanings and grammatical organization. Purely
extra-linguistic factors account for the specific choice of con-
cepts to be incorporated into a complete thought, on any partic-
ular occasion of utterance.

It is clear that in certain respects a word, or lexical en-
try, may be described as a finite set of features, where the
features themselves are chosen from a finite and definite list.
In short, a word is a complex formal symbol. The admissibility
or inadmissibility of a lexical item for insertion into a par-
ticular phrase-structure pattern is expressed in a completely
formal way, determined by the presence or absence of certain
features. The rules governing this admissibility are finite in
number and are completely definite. They are computable rules.
So, in fact, are all the other uses that are made of these fea-
tures. At every stage of the linguistic process, beginning with
lexical insertion, running through all transformations, and in-
cluding the operation of phonological principles and the asso-
ciated motor activity in the oral cavity, all processes are en-
tirely mechanical, and their effects are completely predeter-
mined. They are purely form-al manipulations.

But it is a psychological assertion that lexical items are
constructed out of features. The determination whether a certain
concept can or cannot stand in a specified grammatical relation
in a specified context is made solely with reference to the pre-
sence or absence of a specified set of features in its associated
lexical entry. From a different point of view, then, these fea-
tures are simply another set of categories which condition the
admissibility of a lexical entry to play certain grammatical
roles in an utterance, to stand in certain conditioned grammati-
cal relations. If a lexical entry has, say, a sense which is not
expressed by its collection of features, that sense will not
figure in subsequent grammatical processes. That sense can then
be omitted from linguistic description without in any way af-
fecting or altering grammatical facts. Reasonably current
statements of this "interpretive" position may be found in (Fo-
dor, 1975] and in [Katz, 1977].

It is not surprising that in recent years linguistic re-
search has focused on the lexical component of GTGs. In 1967
Lakoff and Ross [Lakoff, 19671 suggested that the validity of the
concept of deep structure could not be sustained. The generation
of a phrase-structure pattern was understood to be itself in-
trinsically conditioned by the choice of lexical items for lexi-

- 36 -

cal insertion. The role of the context free phrase structure
component was changed considerably as deeper complexities asso-
ciated with lexical insertion were uncovered. Since the features
associated with a lexical entry carried "semantic" as well as
syntactic information about that entry, it was proposed that the
processes that operated with these semantic features need not be
distinguished in form from purely syntactic processes.

Transformations were seen to be both necessary and suffi-
cient for all the generative processes of language, from the
initial organization of thoughts in a form-al structure to the
final achievement of a phonological matrix.

This "generative semantics" view proposes that grammatical
processes must and do have semantic characteristics that are as
important for the notion of linguistic well-formedness as are
purely syntactic issues rLakoff, 19711. In Lakoff's presentation
a lexical item has associated with it a transformation whose ap-
plication to a structural description accounts for the occurrence
of that item in the utterance. We notice again that insofar as
all these processes are computational, or generative, they are
concerned only with the manipulation of uninterpreted form.

A complete survey of current thinking about lexical and ca-
tegorial structures and processes would exceed the scope and re-
sources of this study. I will mention only superficially a few
contributions in the study of these components of a grammar for a
natural language.

No discussion of ideas about word meanings can be generally
adequate unless it deals with such issues of word meaning as one
finds in the studies of the great semanticists of an earlier pe-
riod. Modern linguistic studies have tended to set these issues
aside on the ground that their influence on the forms of language
is not at present empirically testable. I will later propose

that these influences can be accounted for by showing that the
framework discussed above for the study of the human norm can be
formalized at least as much as can the framework for generative
grammar. Specifically I will propose definite shapes for the
mental forms associated with lexical entities, transformational
rules, structural descriptions and the agencies that administer
such processes as the transformational cycle. But at this point
I will simply reproduce a few selected observations from Stephen
Ullmann's classic study of semantics fUllman, 1951]. These ob-
servations provide subtle and powerful insights into language
meaning, insights which are easily lost in the face of an exces-
sive and exclusive preoccupation with formal manipulation.

"Language has various means at its disp>sal to convey

vagueness, uncertainty, approximateness, the lack of sharp con-
tours. Expressions like 'about a hundred' , 'greenish', 'not
unlike', 'comparatively', are referentially designed to introduce
this element into discourse. These explicit devices must be kept
apart from the implicit vaqueness which is the most striking
differentia of the sense.

-37 -

"The vagueness of the sense is an inherent but highly vari-
able feature. It is a consequence of the process of abstraction
by which our 'concepts' are evolved. Without going into psycho-
logical details, it is clear that even the reference called up by
proper names is a mere 'schema': what we think of when we hear
the name 'Napolean' is a telescoping of the artillery officer at
Toulon, the victor of Austerlitz, the exile of Saint Helena, and
so on... With generic names the simplification and reduction to
a bare outline, or even to a mere 'act of reference' devoid of
any perceptual elements, becomes more marked, and the gap between
the virtual sense in the language system and the actualized sense
of speech-contexts widens considerably.

"There are also more specific reasons for semantic vague-
ness. In some cases, lack of sharp demarcation lines is a prop-
erty of the referent itself. The difficulty of delimiting the
various parts of the human body is thus responsible for the shift
in Latin 'coxa' 'hip' > French 'cuisse' 'thigh'.

"When assessing the emotive components of the semantic re-
lationship, the term 'emotive' must be taken as a kind of pars
pro toto for all non-cognitive factors entering into verbal con-
T-iguF atons. It should thus include affective as well as voli-
tional aspects, and, from another angle, both expressions of
one's own feelings and the arousing of feelings in other people.

"The affective side of language is just as fundamental as
its cognitive function. In theory, every utterance is both com-
municative and emotive: there is always something to be said,
and a subjective interest in saying it. ... The two elements
are in principle always compresent in speech; it is only their
dosage that varies.

"It is quite natural for all elements of the language system
to play their part in discharging so fundamental a function. E-
motions can be conveyed in many ways: by intonation and rhythm,
by the choice of suffixes (endearing, pejorative, etc.), by
word-order and syntactic arrangement, etc. It was realized by
semanticists at an early stage that no complete description of
the sense of a word can leave out of account its affective 'o-
vertones'.

"... in most cases the situation alone can tell whether a
term is used referentially or affectively... Even the most pro-
saic objects can suddenly acquire unexpected sentimental over-
tones:

Thou wall, 0 wall, 0 sweet and lovely wall,
Show me thy chink, to blink through with mine eynel
Thanks, courteous wall: Jove shield thee well for this!
But what see I? No Thisby do I see.
0 wicked wall, through whom I see no bliss!
Cursed be thy stones for thus deceiving mel

- 38-

Midsummer Night's Dream, Act V, sc. i.

"... some emotional elements are neither individual nor
purely contextual in character: they are a permanent accompani-
ment of the word and sometimes its very raison d'etre. ...girl -
lass - maiden, mother - mummy - mater, TITle - small - tiny -
teeny - wee ...

"Many terms of praise and reprobation become saturated with
the moods and feelings attaching to them in innumerable contexts:
'freedom', 'liberty', 'democracy', 'right', 'persecution', 'ty-
ranny' - all preferably with a capital initial - as well as the
various -isms and other fashionable slogans are examples in p-
oint.

"The stylistic nuance of 'barbarisms, provincialisms, vul-
garisms, archaisms' and technical terms lies outside the scope of
semantics; much of it belongs obviously to 'la parole' and not
'!a langue'. Emotive undertones of this kinds may, however, have
more permanent effects; they may provide the momentum which
carries a word outside its linguistic, dialectal or social boun-
daries, and which occasionally sets off major processes of lin-
guistic borrowing altering the whole structure and fabric of the
vocabulary.

"Recent investigations ... have discovered close paralle-
lism between conventionality and expressiveness on the one hand,
referential and emotive meaning ('notional' and 'interjectional'
meaning) on the other. The more affective the import of a word -
either permanently or in a given context - the more alive we be-
come to its expressive resources, and vice versa. A sliding
scale stretching from scientific terms at one end to pure inter-
jections at the other gives an idea of the varying utilisation of
evocatory facilities.

"Another feature which emotive power has in common with the
kindred phenomenon of motivation is its subjective validity.
Verbal likes and dislikes are notoriously unaccountable, and ore
person may find comical what another has found expressive or mo-
ving. ... Where Wordsworth writes: 'And sitting on the grass
partook the fragrant beverage drawn from China's herb,' Tennyson,
in his customary bias against non-Saxon words, comments: 'Why
could he not have said "And sitting on the grass had tea."?'

"Poetry is the medium par excellence of emotive meaning, and
it is by no means surprising that a purely cognitive approach to
its 'message' may frequently lead to misunderstandings, or to
utter bewilderment."

I will not pause to comment on Ullmann's observations here,
except to note that the emotive content of words is as "funda-
mental" and significant as is their cognitive content, and to p-
oint again to the first quoted observation about the vagueness
and approximateness that appears to be a fundamental part of

- 39-

language. An undue fascination with the purely formal manipula-
tions of language can easily hide these and other significant
properties of language from our view.

We have already discussed the semantic theory of Fodor and
Katz. Some of the later developments in lexical and semantic
theory were criticisms of parts of this theory, and others have
presented more comprehensive alternatives.

Weinreich's principle criticism of the Fodor-Katz theory was
essentially that the relationship of semantic features was not
explicitly represented with reference to the grammatical rela-
tionships that were determined in the deep structure [Weinreich,
19801. In part to correct this defect Weinreich proposed that
bundles of features had to have some systematic organization im-
posed on them. For example, he distinguished between a "ciuster"
and a "configuration" of semantic features. A cluster is simply
an unordered set. But the elements of a configuration are line-
arly ordered, where this ordering expresses a certain conditional
relation between semantic features. For example, a daughter is a
female and an offspring, and these two features make up a clus-
ter, because, in the meaning of the word 'daughter' the contri-
butions of 'female' and 'offspring' are independent of each
other. On the other hand a chair is involved with 'furniture'
and with 'sitting', but only in a conditional way. To paraphrase
in pseudo-language, 'female' can 'offspring' and 'offspring' can
'female', and in both cases we get 'daughter'. "Furniture' can
'sitting', but whatever this means, we cannot have in the same
sense that 'sitting' can 'furniture'.

Weinreich then specifies two operations, one which produces
composite clusters and another which produces a family of dif-
ferent kinds of composite configurations.

He also proposes an optional second kind of ordering of the
elements in a cluster, one in which earlier features in the
cluster would have more prominence in the utterance, more empha-
sis, than later features. Without such a convention, for exam-
ple, the sentence

A small elephant is big.

would be interpreted to be contradictory.

A further, interesting idea is that of a "transfer" feature.
To say of a craft that one sailed it is to have the transfer of a
'water vehicle' feature from 'sail' to 'craft'. To say of the
craft that one flew it is to transfer the feature 'airplane', or
some similar feature.

Fillmore has made more radical proposals for the lexical
component and the categorial system [Fillmore, 1968, 19721. He
describes a lexicon in this way.

- 40 -

A lexicon viewed as part of the apparatus of a generative
grammar must make accessible to its users, for each lexical item,

(i) the nature of the deep-structure syntactic environments
into which the item may be inserted;

(ii) the properties of the item to which the rules of
grammar are sensitive;

(iii) for an item that can be used as a 'predicate', the

number of 'arguments' that it conceptually requires;

(iv) the role(s) which each argument plays in the situation
which the item, as predicate, can be used to indicate;

(v) the presuppositions or 'happiness conditions' for the
use of the item, the conditions which must be satisfied in
order for the item to be used 'aptly';

(vi) the nature of the conceptual or morphological rela-
tedness of the item to other items in the lexicon;

(vii) its meaning; and

(viii) the phonological or orthographic shapes which the
item assumes under given grammatical conditions.

The roles which arguments play in a situation indicated by a
predicate are formalized in Fillmore's treatment of grammatical
"cases". He specifies a partial list of cases in this way:

Agent (A), the instigator of the event

Counter-agente (C), the force or resistance against which
the action is carried out

Object (0), The entity that moves or changes or whose po-
sition or existence is in consideration

Result (R), the entity that comes into existence as a re-
sult of the action

Instrument (I), the -timulus or immediate physical cause of

an event

Source (S), the place from which something moves

Goal (G) the place to which something moves

Experiencer (E), the entity which receives or accepts or
experiences or undergoes the effect of an action.

For example, the sentence
- 41 -

Eddie gave the yogurt to his doggie.

will originate from a deep structure pattern which, prior to le-
xical insertion will consist of a verb and a set of noun phrases
each of which is identified or labelled for a specific case re-
lation to the whole sentence. For this example 'give' will be
the verb, 'Eddie' will be the Agent, 'the yogurt' will be the
Object and 'his doggie' will be the Experiencer. One could of
course express all this as a labelled tree structure, but such
structures will be purely notational devices for Fillmore since
each of the constituents in deep structure is already identified
for function, and this identification is itself adequate for at
least part of the structural description. Specific rules for
introducing prepositions will operate upon the identification of
cases. The Agent preposition is 'by'; the Instrument preposi-
tion is 'by' if there is no Agent, and otherwise is 'with'; the
Experiencer preposition is typically 'to'; and verbs of motion
will have other specific prepositional rules associated with
their various cases, and will also condition the prepositions
used in connection with reporting various forms of motion.

Transformations applied to this deep case structure will
then be capable of accountinq for any of

Eddie gave his doggie the yogurt
His doggie was given the yogurt by Eddie
Eddie's giving his doggie the yogurt...
Did Eddie give his doggie the yogurt?

What did Eddie give his doggie?

and others. Fillmore goes on to consider in some detail the
mechanisms by which grammatical subjects and objects are deter-
mined.

Gruber takes a different approach to the form of lexical
entries and to the forms that the categorial component must gen-
erate [Gruber, 1976]. He cites example like the following.

Wally wants some yogurt.
Wally yearns for some yogurt.

He observes then that these sentences must share certain essen-

tial structural features in deep structure, say

(<noun phrase> (<verb phrase> <noun Phrase>))

The preposition is sometimes part of the verb and sometimes not.
We do not have

Wally wants for some yogurt.
Wally yearns some yogurt.

although we can easily interpret at least the first of these
"deviant" sentences. Other verbs make some prepositions option-
al.

-42 -

Eddie strayed from the path of virtue.

Eddie strayed away from the path of virtue.

We can have

Eddie strayed.

Eddie strayed away.

but we cannot have

Eddie strayed the path of virtue.
Eddie strayed away from.

The process whereby the preposition is not expressed in the sur-
face structure but is included with the "meaning" of the verb is
called "incorporation", and Gruber finds wide application for the
notion. He finds evidence that complete noun phrases are subject
to incorporation.

The cat is eating tuna.
The cat is eating string.

But when we hear

The cat is eating.

unless other factors tell us to expect facetiousness, we assume
that it is some kind of food the cat is eating and not some kind
of string.

Adjectives can also be incorporated.

Your casserole smells delicious.
Your casserole smells disgusting.

But for the sentence

Your casserole smells.

we normally expect that a certain unpleasantness is alluded to.

To accommodate the formal manipulations associated with this 0
range of phenomena Gruber proposes that a lexical entry is ex-
pressed properly as a phrase-structure exhibiting those elements
that may or may not be incorporated in the surface structure.
For the verb 'escape' we have something like the following in the
lexicon:

(MOTIONAL POSITIONAL :r[OUT-OF] <noun phrase>])

where MOTIONALand POSITIONAL are features that identify the
character of the verb, and OUT-OF is a semantic item that repre-
sents the part of the meaning of the verb that may be expressed
prepositionally. The square brackets indicate optionality, so
that we can account for all of

- 43-

Wally escaped.
Wally escaped the doghouse.

Wally escaped from the doghouse.

The base component is then required to generate structural de-
scriptions that can accommodate the introduction of prepositions
where necessary, or their omission when the lexical structure
represents that the preposition may be incorporated or must be
incorporated.

For example, verbs involving a goal may have, in their le-
xical entry, a semantic item TO, which may be expressed by dif-
ferent prepositions for different verbs. Categorial structure
would be necessary to mediate these. Here are some examples of
goal sentences which are expressed with different prepositions.

Eddie ran below the boardwalk.
The doggie scooted in front of the building.

Wilbur jumped on the truck.
Birdie flew into the birdbath.

She ate off the tray.
He rolled the hoop ahead of him.
He rolled the hoop behind him.

He rolled the hoop in front of Wallis.

In earlier treatments of the lexical component, lexical i-
tems were attached to a single node in the phrase structure tree
generated by the base component. For Gruber, this attachment may
involve several nodes of the categorial tree, and may even in-
volve some of the phrase structure. These moves are needed in
order to handle the prepositions, and the general phenomenon of
incorporation. It requires complications to the categorial sys-
tem, and a fundamentally more complex and more powerful lexical
attachment process. Briefly, the process whereby the components
of a simple primitive thought are assembled together for utte-
rance are conditioned by the way in which the thought will be
expressed in surface structure.

I will not review any further work dealing with categorial
or lexical structures. Instead, we turn now to a suggestion of a
new approach to the description of linguistic and other mental
structures, processes and rules.

12. The form of meaning

A. Preliminaries to formulation

In this section we propose an alternative to the structures
and processes that are currently involved in the study of lan-
guage and the semantics underlying language. These ideas have
been heavily influenced by G. Spencer Brown's study of form,
tBrown, 19721, but I will not discuss in any detail here the
exact relation between Brown's ideas and those given here. I
will only mention that he takes the primitive concept to be that

- 44 -

of drawing a distinction, and he proposed to explain all the
methods of construction in coherent articulation with reference
to this notion alone. His work when approached seriously makes
it quite clear that this very simple but quite obscure idea is at
work at every turn in reasoning and speaking. His conclusion,
for example, is that the processes of drawing distinctions are
the same whether we fix attention on the marking of a distinc-
tion, the calling of it into awareness, the movement across the
boundary of the distinction, or the observation of it.

The alternative meaning structures proposed here are based
on a number of assumptions.

(1) In the absence of any conclusive evidence to the con-
trary, it is inappropriate to ignore the possibility that
the mental and physical structures and processes associated
with the human norms's behavior are in important respects
distinct.

(2) Mental structures and processes are orderly, and this
orderliness may be expressed in a definite way as a system
of structures and processes which are common to all "nor-
mal" human beings.

(3) These common structures are concerned with the manipu-
lation of forms - abstract and uninterpreted computational
structures.

(4) Individual humans deviate from this common norm in the
particular uses they make of these forms, and in con-
strained but characteristic variations of these forms.
These particular uses are themselves determined by the in-
dividual's experience (past and present), by a personality
specific pattern of preferential judgments and by a system
of conceptualizations.

(5) These forms are the carriers of awareness of percep-
tion, of feeling and of emotion, but are never themselves
direct participants in acts of awareness, perception,
feeling or emotion. They are thus not observable by in-
trospection, and insofar as they are independent of physi-
cal structures and processes, neither are they observable
by physical instruments. In short, computation is the un-
observable carrier of conscious experience.

In spite of (5) I think it is possible that we may infer
something about the forms of mental structures and processes in-
directly by abstracting from the behavior of human beings in a
variety of different kinds of situations. I think that the ideas
presented here may make it possible to pose empirical questions
about the nature of these forms, questions whose answers may be
obtained by experimental procedures. It is also possible that
these ideas may lead to useful technological and methodological
applications.

-45 -

... . . . -- A

Specifically the proposal is that all mental entities which
are carriers of experience are recurrences. These recurrences
will exhibit regularities in their forms. That is, they will
combine together in orderly ways to make composite recurrences,
and composite recurrences will be subject to decomposition into
constituents. The intuitive notion of recurrence is that some-
thing "occurs" again and again without so much change that we
cannot interpret it as a re-occurrence, a recurrence. For exam-
ple, it is a mental process--to hold onto a memory of an occur-
rence of a sensation after the sensation itself has come to an
end. The basis for perception is not occurrences of sensations
but recurrences of sensation-traces. And it is those recurrences
that-are subject to abstraction and elaborate conceptual organi-
zation. A perception is itself carried by a concept-conditioned
form which recurs through time. A feeling or an emotion J s the
application of a preferential judgment applied to a form, and is
itself also carried by a form that endures through time. If a
thought has propositional content, that content is carried by a
concept-conditioned form that recurs through time.

An irreducible recurring form will be one whose composition
structure if it has any, does not carry any relevant aspect of
experience. Irreducibility is thus itself a relative notion.
And indeed, we may speak of reducibles in place of composites,
understanding the same relativity. What is irreducible in one
situation may be composite in another.

I gave my daughters dolls and my sons robots.
I am reeting my daughter for lunch.

If, in feature terms, we think that daughter has the features
(offspring] and [femalel, then those distinct features are rele-
vant for the first sentence but not for the second. Perhaps the
only feature that might, in context, be relevant, would be that
of [relationshipl.

The recurrence of a reducible form is in general subject to
indeterminacy. A variety of factors influence the degree ,f in-
determinacy, but in general it cannot be eliminated for arbitrary
lengths of time, for arbitrarily extended durations of the re-
currence. We do not need many examples of inherent vagueness in
language.

People never say things like that.
Boys naturally like football.
Her singing was impeccable.

Fcr computer realization, the presence of indeterminacy indicates
that the computer system will be an idealization. We note that
according to these ideas it is the form itself that is indeter-
minate and that as a consequence the experience carried by it
will be indefinite or vague.

- 46 -

Recurring forms cannot themselves be directly experienced.
We might anticipate then that composition operations involving
them will not be altogether familiar. Three such operations will
be described here, although we may eventually postulate a set of
operations that are themselves specified with reference to a
E stem of meta-operations. The three we describe here are fu-
s. -i, coordination and subordination. Fusion is an operation
which combines two (recurring) forms into one. One speaks of a
"fusion event". Fusion "blends" its constituents together.
Those constituents are then not directly available in the compo-
site. Fusion, called '*', has the property that although z is
the result of the fusion event taking place with x and y, we may
not be able to recover x and y as the unique constituents of that
fusion. Our instincts for rigour may be offended by an operation
like fusion, but it is too bad. Life is like that.

For example, (featherless * biped] may yield (human], but we
may later analyze [human] into Tmammal * with humor]. Here we
have a first halting step toward representing Michael Polanyi's
"tacit" knowledge. And it also provides us with a way of repre-
senting the difference between background and foreground knowl-
edge. Fusion tends to produce irreducibles.

The difference between fusion and coordination is that the
constituents of a coordination are always recoverable in a defi-
nite and unique way. There is no other difference. Like fusion,
coordination is associative and commutative and idempotent. One
reason to have this contrasting pair of combinations is to ac-
count for the fact that information can be relevant for a time
and then may become irrelevant. Thus a coordination may turn
into a fusion, under specified conditions. Depending upon the
perspective we may describe the process of turning a coordination
into a fusion as a simplification or as a generalization. And
the inverse process of turning a fusion into a coordination as an
elaboration or a refinement. For example, the process whereby
the phrase "song and dance" comes to express a unitary idea is an
instance of a coordination becoming a fusion. All events of
composition in which constituents retain some structural integ-
rity will involve coordination. These are widespread. "Juicy
red apple", "red hot momma", "Bring the knife, the butter and the
toast!".

Fusion is as widespread as coordination, but it is less easy
to recognize because it marks the boundary at which distinctions
become inarticulatable. In many cases this is also the boundary
where what is explicitly grammatical becomes what is colloquial.
Such phrases as "here and there", "now and then" and "this and
that" are typical. But fusions may participate along with other
irreducibles in clearly articulated grammatical constructions.

His song and dance no longer fools us.
Run this over to the Dean's office.
S9h'll bend your ear all afternoon.

five us5 r -reak!
- 47-

-7&

But since fusion tends to produce irreducibles, we do not in
general expect to see composites of any detail with interesting
fusion characteristics.

Fusion may also turn into coordination, but with results
that are somewhat indeterminate. The transformation from fusion
to coordination may produce information that was not present in
the "original" coordinate, or it may leave out information that
was originally present. It is possible that this transformation
is related to the processes whereby information is integrated
into memory or retrieved from memory, processes that are surely
conditioned by a number of distinct factors and influences. Fu-
sion may also be related to the processes attendant upon shifting
attention, sharpening or diffusing attention, or expanding and
contracting the field of awareness. Coordination is called '.'.
For example, [juicy . red . applel.

Subordination is quite routine. It establishes a definite
precedence between its constituents. This abstract precedence is
the origin of both sequential order and hierarchical order, de-
pending on the structure already present in the constituents. To
keep notation uniform we will indicate that x is subordinate to y
by writing either of

x(y) y(x)

We will also be interested in the "transitive closure" of
the operation of subordination. There is an ambiguity of inter-
pretation which we will not sort out here. Thus 'y(x)' indicates
either the result of the composition event of subordination on x
and y in a specified order, or else it indicates the fact that in
the appropriate setting x is subordinate to y. Then the transi-
tive closure of subordination can be specified more precisely by
the conditions

x(y) -> xfyl
x[y] and yrz] -> xtz]

Here the pattern ... [...] indicates the transitive closure of the
relation indicated by the pattern ... (...).

For some x it may be the case that x[x]. In such a case x
may be either reducible or irreducible. If x is irreducible and
if x[xl then we say that x is a recurrence and also that it is a
recurrence which recurs in discrete and distinct instances. If x
is reducible and xfx] then we may take that as the condition that
a composite be a recurrence, and that it recurs in distinct con-
secutive occurrences.

In connection with these ideas, which we must set aside for
now, there are clearly questions of well-definedness, consistency
and so on. How do these operations act when they are applied in
succession? Are there any new issues that require systematic
treatment when we speak of events of combination in place of the

-48-

more usual result of combination? In what logically specified
framework will we write the axioms that determine the effects of
these operations?

We may pause for a few more simple examples and an indica-
tion of how these ideas might be applied. It is clear from a
careful reading of the literature in linguistics that the notion
of composition is far from clear. Interesting ambiguities are
present and absent in contrasting situations that bear superfi-
cial similarities. Consider, for example, these phrases.

The prattling of the gossip
The eating of the meal

The shooting of the hunter

The issue in language study is to understand in what way the form
of an expression can admit ambiguity in one case and disallow it
in another.

Or consider

Big European butterflies
The little elephant

In what way does the form of the expression, for example, rela-
tivize the concept 'little' to the concept 'elephant'? In what
way does this form carry the relativization of 'big and 'Europe-
an' to 'butterfly' at the same time that it deals with the ambi-
guity between [big rEuropean butterflyl] and rrbig Europeani
butterfly]? Are these clear instances of subordination in some
kind of abstract representation? Does a well-formed expression
in a natural language, for example, have a number of distinct
structural representations all held simultaneously while the deep
structure is present in some as yet unspecified sense in con-
sciousness?

How exactly does scope of awareness or of attention figure
in the structure of an expression? Is it possible that the
structure of an expression is undergoing continuous change in a
systematic way, throughout its presence in a field of awareness
or a field of relevance? Grammatical transformations have been
adduced to account for the relations among different forms of the
same deep structure, or for the relations between simpler modi-
fications of the same deep structure. Such examples as the fol-
lowing were cited.

Eddie gave his doggie some yogurt.
Eddie's giving his doggie some yogurt.
Eddie's doggie was given some yogurt.

How do we account for the relationships that obviously hold be-
tween consecutive pairs in this example, and thus between any two
in the set?

- 49 -

---- ~ ~ ~ ~ ~ ~ ~ ~ _ -IIIT- -.. . - -... -- l I ---.- lill" -.... 4"..." "."0-

It was a noble thing that Eddie gave his doggie some yogurt.
It was a noble thing that Eddie did to his doggie.

It was a noble thing that Eddie did with some yogurt.
It was a noble thing that Eddie did.

Eddie did something noble.
Eddie did something to his doggie.

Eddie did something.

Surely the relations among these distinct utterances are not
arbitrary. In one direction there is an increasing simplifica-
tion or generalization with a corresponding Loss of specificity,
and in the other direction there is an increasing detail or re-
finement or increase of definiteness. We have seen this same
process in connection with irreducibles and with colloquial u-
sage.

How is this issue related to that most important capacity in
language, the ability to form metaphors? If A is a metaphor for
B how do we account for it structurally? Do we say that in cer-
tain interesting respects we ignore some of the detail in A and
some of the detail in B, and then observe that if thes ignored
details are judiciously selected the resulting simpler forms will
be the same? Or is it the case that what is ignored must have
the same form, and what is left behind in each case is distinct?

These are fundamental and important questions about lan-
guage, and we expect to attempt tentative answers for them in the
future.

B. Background

Recurrent phenomena occur in a number of different situa-
tions involving mind. And it is suggested that recurrent struc-
tures will account natural>' for many aspects of mental phenomena
that may require explanation.

For example, we may examine structures in the nervous system
that seem to be directly implicated with behavior organized in
terms of mentally conceived abstractions. The reflex arc is a
cyclic or recurring event. Autonomic processes, insofar as they
are understood at all, are clearly mediated by closed neural
structures that realize or implement recurrences. (A comprehen-
sive source for questions of fact about neurophysiology is
(Mountcastle, 19741. While it is six years old, I do not think
that any relevant facts have been superseded.) A particularly
interesting example of recurrent cooperating parallel processes
is given in a recent report on the neural generation of swimming
movement in the leech [Stent, 19781. As a result of a compre-
hensive survey of the neurons in adjacent segments of the leech,
the assembly of neurons and their pattern of interconnection has
been recognized that accounts for the "sine wave" pattern of the
leech's swimming movement. The reality here is a system of par-
allel processes that are quite precisely integrated. In detail
this integration is achieved by neural interconnections of both

- 50 -

excitatory and inhibitory synapses. But at a suitable and sig-
nificant level of abstraction (a level that in fact ignores the
actual movement itself) the plan, the form of the phenomenon, is
expressed as a system of cooperating parallel processes. The
transformational cycle in generative grammar is just that - a
process that must be prepared to operate an arbitrary number of
times at successive levels of nesting in a complex expression.
Retrieval from memory is often described as a process involving
recruitment, and the engagement of neural substructures can, in a
quite well-defined way, be described as an entrainment phenome-
non. One suspects that given a suitable definition of the form
of a memory, certain aspects of recruitment could be described as
an entrainment process.

The experience of music, not only at the physiological level
but as well at the level of abstract concepts is decisively a
matter of recurrent processes and entrainment. At a fine level
of detail, periodic phenomena account for pitch and for differ-
ences in pitch. The experience of a single period does not pro-
duce a sensation of pitch. At the other end of the scale perio-
dic phenomena account for what we experience as rhythm. Metric
structure is the skeleton with which harmonic and contrapuntal
elaborations are integrated. Harmony itself is a recurrent mat-
ter both in its internal structure and in regular recurrence of
harmonic patterns so much favored in so many distinct kinds of
music. And one could hardly question the periodic nature of
contrapuntal development.

Thoughtful reflection will reveal that the notion of a sys-
tem of precisely integrated parallel processes is almost compre-
hensive. Further expansion of these purely suggestive remarks

would be of no value. But future research will consist in part
of simulating a range of simple and basic phenomena related to
behavior to show just what is entailed by representing them as
processes subject to entrainment rather than as static entities
subject to fixed structural relationships.

C. Occurrences

At an earlier time in this study we spent some considerable
effort attempting to understand the concept of an occurrence.
That study was in large part motivated by a perhaps naive grasp
of the use of the notion of a well-formed formula in a formal
language. In that little study an effort was made to achieve
some kind of useful processing of language text without the need
to attribute meanings to its parts. The approach was itself
misguided by an excess of respect for static structures. I think
that the reality is that expressions in language are what are
called 'epiphenomena'. (I do not mean to disparage the expres-
sion by this remark. How can we disparage an expression in a
language. It is everything we find it to bel)

Given two theories, one which postulates a lot of entities
and another which postulates just a few, we seem to prefer the
more sparse ontology, other things being equal. We propose that

- 51 -

other things can indeed be kept equal while postulating nothing
but recurring, cooperating processes. Whether this is or is not
the case will be determined by future investigations. The re-
marks we reported earlier concerning occurrences are included as
Appendix A at the end of this report. The results there were
inconclusive because we were not able to relate the notion of
occurrence to the entities that occur. In the treatment given
here we will understand that it is processes that occur, and this
should eventually clarify our grasp of the way in which processes
in thinking and speaking interact in a coordinated way, according
to rule.

D. General Implementation Notions

We are interested in designing a computational system twhose
central ideas are those involved with the integration of parallel
processes. Individual processes must be able to direct any con-
ventional computation, but there must be a rich set of facilities
for managing the integration and cooperation of an arbitrary
number of simultaneous processes. The ability to call on LISP
(or indeed, in other possible implementations on any high level
language) is as we shall see quite easy to provide. Here we want
to describe the integrating or interacting facilities that are
desirable in a system oriented toward parallelism as a high level
phenomenon.

(1) Individua1 piocesses must be capable of being in a
number of ditinc "states of arousal". If a process is
undergoing transition between successive configurations,
then it is an ACTIVE process. A process may be SUSPENDED
in which case it undergoes no transition unless its state
of arousal is changed from outside. A process may be in a
WAITING state, and will then have associated with that
state a waiting condition. A WAITING process is regularly
interrogated to determine if its waiting condition is sat-
isfied, and when it is, the process is brought to an ACTIVE
state of arousal. A process may reach a configuration that
is a natural ending configuration. Then it is in a TERMI-
NAL state. Terminal states are of two kinds, following a
policy that governs termination of finite state processes.
There are really two kinds of terminal states, TERMINALAC-
CEPT and TERMINALFAIL. These two terminal configurations
are distinguished by the set of transition specifications
that controls the process itself.

(2) A process should be able to initiate or terminate any
other process in the system. It should be able to change
the state of arousal of any process in the system including
its own. It should be able to alter its own or any other
wait condition freely, unless specific indicators forbid it
from doing so.

(3) A process should be able to repli ate itself exactly,
or with arbitrary modifications, so that more than one
identical copy of a process may be active at any given

- 52 -

time. s 1. (4) With each process there should be a pro-
tected set of identifiers determining a local environment
for the process's activities. There should also be a
background environment that is freely accessible by all
processes for any reason. The local identifiers unique to
a particular process ought, however, to be available to
other processes for inspection, if not for modification.
There should be no artificial restrictions on the values
associated with registers when a process is created or
initiated, unless such restrictions are explicitly stated.

(5) In execution it must be possible to specify interrup-
ting situations as freely and arbitrarily as the user might
want. Some processes may honor interrupt mechanisms and
other processes may, at the user's specification choose to
ignore them. Or the honoring of interrupt states might be
made contingent on the configuration the process is in when
the interrupt mechanism interrogates it.

(6) At interrupt time the user should be able to examine
all details of all and any processes in the system. He
should be able to make any changes he wishes at this time -
initiating new processes, changing the configuration or
state of any process, deleting processes, etc.

(7) Individual processes must be uniquely identified by
name, and must be suitable objects of other processes. We
have then the unusual situation that a dynamic ongoing
computation is itself the value of an identifier and is
subject to manipulation in suitable ways. At the present
time it is not clear what we will take as selectors and
constructors for a computation, but it is clear that the
concept of a predicate that takes computations as arguments
is a quite reasonable kind of thing.

(8) Every computational system has the capacity to ask
questions and choose alternative sequels depending on the
answer to the question. Question asking must, in this
system, be the most powerful facility available. This
means that a full mechanical deduction system must be
available for these purposes. It must be possible to carry
out these deductions on information in the background en-
vironment, in the local registers, or in mass storage. It
must also be possible to reason about the processes them-
selves, about their interior structure, about their past
history and in particular about their integration with
other processes.

(9) All facilities made available to the system must be
incorporatable into the processes themselves so that one
has full and complete choice whether to run in a heavily
interactive mode or in a fully automatic mode.

In the next section of this report we will describe in detail the
prototype implementation in LISP of a primitive system for mana-

- 53 -

qing the simulation of parallel computations.

-54 -

13. Integrated Parallel Processing

A. Introduction

In this section we describe a facility which, when added to
a high-level programming language, provides a general facility
for specifying the details of the temporal organization of a
system of parallel computations. We take the point of view that
in some cases an interesting computation can be specified in
terms of a number of parallel computations that interact with
each other. In this particular study we have embedded this fa-
cility in the LISP system as modified at the University of Cali-
fornia at Irvine, and subsequently at Rutgers University. Com-
putational steps that are not germane to the control structure
processes introduced here thus may be of any size or complexity.
In particular, these steps may be any that are obtainable as the
result of submitting an S-expression to the LISP evaluator. As
we shall see, however, there is no particular reason to imagine
that these facilities are best implemented in a LISP context.
Aside from some questions of programming convenience, these
facilities could be embedded in any programming language.

The basic elements in the programming process described here
are quadruples and sets of quadruples. A quadruple is a list of
four things, much like the quadruple for a Turing machine. The
first element of this list is a "current state" and its last el-
ement is a "next state". But we depart sharply from Turing's
original formulationand permit any S-expression to occur as the
second element of a quadruple. Following the LISP convention,
this second element, or "test", succeeds if its value is anything
other than NIL, and it fails if its value is NIL. In a similar
way the "act" or third part of the quadruple can also be any S-
expression. Ordinarily we envision that a call on the act part
of a quadruple will initiate a process having substantial "side
effects". A set of quadruples thus specifies a system of possi-
ble transitions from state to state, conditioned by tests ex-
pressed as LISP S-expressions, and having environmental effects
mediated by the evaluation of other LISP S-expressions.

It is explicitly allowed that the part of the computation
specified by these sets of quadruples may be non-deterministic.
A process which begins as one computation may thus expand at
non-deterministic points into a family of computations. The
facilities we describe here permit communication among all these
computations, and permit a computation to intervene, even deci-
sively, in the course of another computation.

I call a computation a "world line". We may summarize the
new facilities as follows. A world line is initiated by speci-
fying its environment, its initial state, and certain control
flags. One world line may initiate,terminate change or may in-
terrogate another. One world line may suspend another, and a
suspended world line may only become active again by the action
of some already active world line. One world line may set an-

- 55-

other world line waiting. A world line which is waiting may be-
come active by having an associated wait condition evaluate to
something other than NIL. Thus, a world line may be made inac-
tive by the action of another world line, but its restoration to
active status may be effected either as a consequence of the
evaluation of its own wait condition or by the activity of an-
other world line. By referring to the history of a world line,
its ancestor world lines, one world line may act upon all the
surviving descendents of a specified world line.

A world line dies when it cannot achieve transition into
another state due to the fact that there is no available quadru-
ple with that world line's current state as its first member.
Such world lines are saved in a list of dead worlds. A world
line which cannot transition because its test fails is annihila-
ted. Thus a world line may be active, suspended, waiting or
dead. Only active world lines try to transition. But at the end
of each sweep of all active world lines, a sweep of all waiting
world lines is conducted during which each waiting world line's
wait condition is evaluated. The result of this evaluation
determines whether the waiting world line is made active again.

There is also an interrupt facility which suspends the
transitioning of world lines so that the user may intervene, in-
spect the state of the processes, and make changes.

Another peculiar facility is provided in connection with a
world line's environment. Although the computation that proceeds
during the elaboration of a world line may deal with a general
LISP environment, state transitions for a world line are ordina-
rily effected with reference to a fixed set of registers, whose
status is best described as follows. The tests and acts in a
quadruple may make reference to any of a number of registers. A
complex test may make changes to these registers. If the test
succeeds, then the registers are treated as though their contents
had been called "by name", but if the test fails, then those
contents are treated as though they had been called "by value".
Thus, in the presence of a failing test, changes to the registers
are ignored, while successful tests make such changes permanent.

In connection with the interrupt facility one may suspend or
activate <world line>s or set <world iine>s waiting, where this
activity is contingent upon a <world line>'s having a specified
<world line> among its <ancestors>. It may also be contingent
upon the success or failure resulting from the evaluation of a
specified condition. The evaluation of this condition may refer
to the <world line>'s registers and the user may specify that
registers are to be called by name or by value, when this condi-
tion is evaluated.

In subsequent parts of this section we describe the LISP
functions which provide an operational implementation. Then in
the next to the last section we describe some extremely simple
test cases which verify at an intuitive level that the imple-
mentation operates as advertised, and in the last section we

-56-

discuss the application of this programming methodology to some
specific computational problems, and sketch the next steps in the
project.

There is no literature review here since these developments
have come too recently to permit the very specific kind of search
that is required. And the programming facilities provided here
are hardly offerred as a well-defined new programming language.
But whatever appropriate language constructs may evolve, they
will make reference to the facilities described here. In a
fashionable jargon, the semantics is provided but not the syntax.

Finally, it should be noted that the facilities are pro-
grammed in a raw form. The construction and reconstruction of
world lines is done here using commonplace LISP constructors. An
efficient implementation would certainly take the view that its
function is to arrange and rearrange pointer structures, obvia-
ting the need to assemble new lists at every stage of the pro-
cess. And extensive error-checking facilities should also be
provided.

We have not begun to address the question of verification of
processes specified in this system. In particular we have not
treated explicitly the details surrounding points of contact be-
tween two processes. These matters are usually discussed with
reference to such notions as semaphores, critical regions and o-
thers. LBrinch Hansen, 19731 provides an adequate introduction
to these ideas, but much has occurred in this rapidly expanding
field. Eventually it will be important to place the present work
in proper relation to the ongoing studies in operating system
design and function.

I am presently calling this set of facilities KOTSU. A
KOTSU is a stick used in Zen monasteries to make a point, to sit
on, or to rap students who do not remain upright. A KOTSU is a-
bout fifteen inches long and is shaped like the human spine.

A. Computational Environments

Processing takes place with foreground and background
information. The background is completely unprotected. Any ac-
tivity whatever that references or changes the background does so
in an unrestricted way. Therefore, processing stages that fail
may leave a record or trace of that failure in the background.
The foreground is, in a well-defined sense, protected. Certain
processes have a tentative status, and until that status is re-
solved, associated changes to the foreground are provisional.
But the resolution of the status of a process may make changes to
the foreground permanent.

The foreground is implemented as a set of registers or at-
tention 'ixers. There is theoretically an unlimited number of
these registers. They are systematically named: *1, *2, *3, ...
A special register, *0, is available, in an unprotected way, to
all processes. The background is the LISP environment.

-57-

C. Quad Sets

An algorithm is expressed as a <quad set>, a set of quadru-

ples.

<quad set> ::= (<quad set name> <start state>
<register list> <quad list>)

Here are the selector functions for <quad set>s.

(DEFPROP QUADSETNAME (LAMBDA (X) (CAR X)) EXPR)
(DEFPROP STARTSTATE (LAMBDA (X) (CADR X)) EXPR)
(DEFPROP REGISTERLIST (LAMBDA (X) (CADDR X)) EXPR)
(DEFPROP QUADLIST (LAMBDA (X) (CADDDR X)) EXPR)

CHANGESTARTSTATE is a service function which changes the <start

state> in a <quad set>. Following it is a function which changes
the <quad set name> in a <quad set>. This latter function also
changes the names of all the <quad>s in the <quad set>. Each of
these functions returns the changed <quad set>. A <quad> is de-

fined just below.

(DEFPROP CHANGEQUADSETNAME
(LAMBDA (QUADSET NEWNAME)
(LIST NEWNAME

(STARTSTATE QUADSET)
REGI TERLIST QUADSET)

(CHANC!-QUADSNAME QUADSET NEWNAME)))
EXPR) ~ UDENMQAST

(DEFPROP CHANGESTARTSTATE
(LAMBDA (QUADSET NEWSTARTSTATE)

(LIST (QUADSETNAME QUADSET)
N EWSTARTSTATE

(REGISTERLIST QUADSET)

QUADLIST QUADSET)))

EXPR)
(DEFPROP CHANGEQUADSNAME
(LAMBDA (QUADLIST NEWNAME)

(MAPCAR (FUNCTION
(LAMBDA (X)

(LIST (CURRENTSTATE X)
TEST X)
ACT X)
NEXTSTATE X)

(COND f(FULLQUADNAME? (QUADNAME X))
(CONS (SETPARTOFFULLNAME X)

NEWNAME)]

(NEWNAME))))))
EXPR)
(DEFPROP CHANGEQUADSETREGLIST
(LAMBDA (QUADSET REGISTERS)
(LIST (QUADSETNAME QUADSET)

(STARTSTATE QUADSET)
REGISTERS

QUADLIST QUADSET)))
- 58 -

E XPR)
(DEFPROP ADDQUADTOLIST
(LAMBDA (QUAD QUADSET)
(LIST (QUADSETNAME QUADSET)

(STARTSTATE QUADSET)
(REGISTERLIST QUADSET)
(CONS QUAD (QUADLIST QUADSET))))

EXPR)
(DEFPROP DELETEFROMQUADLIST
(LAMBDA (QUADSET QUADNAME)
(LIST (QUADSETNAME QUADSET)

STARTSTATE QUADSET)
REGISTERLIST QUADSET)

(DELETEFROM QUADSET QUADNAME)))
EXPR)
(DEFPROP DELETEFROM

(LAMBDA (SET NAME)
(k 4D [(NULL SET) NIL]

[(EQ NAME (QUADNAME (CAR SET))) (CDR SET)]

[(CONS (CAR SET) (DELETEFROM (CDR SET) NAME))]))

EXPR)

A <quad set name> and <start state> are identifiers. <reg> is an

infinite list: (*1 *2 *3 ...). A <register list> is any finite
initial segment of <reg>, and exhausts all the registers refer-
enced by the <quad set>. It is the responsibility of the user
that this condition is satisfied for the <quad set>s he prepares.

A <quad> is similar to a Turing machine quadruple, except
that the second and third elements can be any S-expression in
LISP. And a <quad name> is added as a fifth, non-operational
element. These names are used to identify the quad, and are
therefore purely cosmetic.

<quad> ::= (<current state> <test>

<act> <next state> <quad name>)

A <current state> and a <next state> are identifiers, pending an

upcoming qualification. On the other hand, a <quad name> is a
dotted pair:

<quad name> ::= (<quad set name> . <quad name>

The <quad set name> is the name of the <quad set> in which the
<quad> occurs, so that all <quad name>s contain the name of the
<quad set> in which the <quad> occurs.

<test> ::= <S-expression> I ELSE
<act> ::= <S-expression>
<quad list> ::=(<quad>+

(The sign "+" after a category name indicates any finite non-
empty sequence of objects belonging to the category.) Here are
the selectors, predicates and modifiers for <quad>s, and the
function CHANGEQUADSNAME, which changes the <quad name> for each
<quad> in a <quad set>.

- 59 -

A <full state> is like a <full quad name>.

<full state> ::= (<quad set name> . <state>)

A state which is not a <full state> is a <simple state>.
The category <state> includes both.

The <next state> of a <quad> may be a <full state> but
<current state> is always an atom. It is the user's responsi-
bility to see that this condition is met.

(DEFPROP CURRENTSTATE (LAMBDA (X) (CAR X)) EXPR)
(DEFPROP TEST (LAMBDA (X) (CADR X)) EXPR'
(DEFPROP ACT (LAMBDA (X) (CADDR X)) EXPR)
(DEFPROP NEXTSTATE (LAMBDA (X) (CADDDR X)) EXPR)
(DEFPROP QUADNAME (LAMBDA (X) (CAR (CDDDDR X))) EXPR)
(DEFPROP FULLQUADNAME
(LAMBDA (X) (AND [CONSP X1 [ATOM (CAR X)j [ATOM (CDR X)]))
EXPR)
(DEFPROP SETPARTOFFULLNAME (LAMBDA (X) (CAR X)) EXPR)
(DEFPROP QUADPARTOFFULLNAME (LAMBDA (X) (CDR X)) EXPR)
(DEFPROP STATEPARTOFFULLNAME (LAMBDA (X) (CDR X)) EXPR)
(DEFPROP MAKEFULLQUADNAME
(LAMBDA (SETNAME QUADNAME) (CONS SETNAME QUADNAME))
EXPR)

This next function changes <next state>s in <quad>s to reflect a
change in the <quad set name> of the <quad set> containing the
<quad>s. It distinguishes <state>s from <full state>s.

(DEFPROP UPDATE
(LAMBDA (QUADS NAME)
(MAPCAR (FUNCTION (LAMBDA (X) (UPDATENEXTSTATE X NAME)))

QUADS))
EXPR)
(DEFPROF UPDATENEXTSTATE
(LAMBDA (QUAD NAME)
(LIST (CURRENTSTATE QUAD)

TEST QUAD)
ACT QUAD)

(COND r(ATOM (NEXTSTATE QUAD)) (NEXTSTATE QUAD)1
[(CONS NAME

STATEPARTOFFULLNAME
NEXTSTATE QUAD)))])

QUADNAME QUAD)))
EXPR)

And here are some service functions for dealing with <quad>s and
for searching <quad set>s. FINDELSEQUAD and FINDNONELSEQUADS
reconnoitre a list of <quad>s and, for a specified <state> return
either a single <quad> whose <current state> is the specified
<state> and whose <test> is ELSE, or else a list of non-ELSE
<quad>s whose <current state>s are the specified <state>.

- 60 -

(DEFPROP CHANGECURRENTSTATE
(LAMBDA (QUAD STATE)
(LIST STATE

(TEST QUAD)
(ACT QUAD)
(NEXTSTATE QUAD)

QUADNAME QUAD)))
EXPR)

(DEFPROP CHANGEQUADTEST
(LAMBDA (QUAD TEST)
9
LIST
(CURRENTSTATE QUAD)
TEST
(ACT QUAD)
(NEXTSTATE QUAD)
(QUADNAME QUAD))

EXPR)
(DEFPROP CHANGEQUADACT
(LAMBDA (QUAD ACT)
(LIST (CURRENTSTATE QUAD)

(TEST QUAD)
ACT

NEXTSTATE QUAD)
QUADNAME QUAD)))

EXPR)
(DEFPROP ISELSEQUAD?

(LAMBDA (QUAD)) (EQ (TEST QUAD) 'ELSE))
EXPR)

(DEFPROP F INDNONE LSEQUADS
(LAMBDA (QUADSEr STATE)

(COND [(NULL QUADSET) NIL]
'(AND [EQ (CURRENTSTATE (CAR QUADSET)) STATE]

(NOT (ISELSEQUAD? (CAR QUADSET))])

(CONS (CAR QUADSET)
(FINDNONELSEQUADS (CDR QUADSET) STATE))]

[(FINDNONELSEQUADS (CDR QUADSET) STATE)]))
EXPR)

(DEFPROP FINDELSEQUAD
(LAMBDA (QUADSET STATE)
(COND [(NULL QUADSET) NIL]

[(AND [ISELSEQUAD? (CAR QUADSET)]
[EQ STATE (CURRENTSTATE (CAR QUADSET))])

(CAR QUADSET)]
[(FINDELSEQUAD (CDR QUADSET) STATE)]))

EXPR)
(DEFPROP FINDALLQUADS

(LAMBDA (STATE QUADSET)
(COND [(NULL QUADSET) NIL]

[(EQ STATE (CURRENTSTATE (CAR QUADSET)))

(CONS (CAR QUADSET)
(FINDALLQUADSSTATE (CDR QUADSET)))]

[(FINDALLQUADS STATE (CDR QUADSET))]))
EXPR)

- 61 -

Here for example are two typical <quad set>s. The first imple-
ments a familiar recursive function to multiply two natural num-
bers together, and the second implements a process to replace all
occurrences of the string "AA" with occurrences of the string
"BB".

*(SPRINT MUL)
(MUL TA

(*1 *2 *3)
((TA T

(PROG NIL (SETQ *1 4) (SETQ *2 3) (SETQ *3 0))
TO
(MUL 0))

(TO (ZEROP *1) NIL SF (MUL . 1))
(TO (ZEROP *2) NIL SF (MUL . 2))
(TO ELSE

(PROG NIL
(SETQ *3 (*PLUS *2 *3))
(SETQ *1 (SUB1 *1)))

TO
(MUL. 3))))

NIL
*(SPRINT AATOBB)
(AATOBB SO

(*1 *2)
((SO ELSE

(PROG NIL
(SETQ *1 (CONCAT *1 (LEFT *2)))
(SETQ *2 (REST *2)))

SO
(AATOBB . 1))

(SO (BEGINS "AA" *2)
(PROG NIL

(SETQ *1 (CONCAT *1 "BB"))
(SETO *2 (REST (REST *2))))

SO
(AATOBB . 2))))

NIL

D. State Transitioning

Control is managed within a <world line> by transitioning
from state to state. Within this control process, a <full
state>, (<quad set name> . <state>), can direct transition only
to a <state> occurring within the <quad set> whose name is <quad
set name>. But a <state> can direct transition to any <state> in
any <quad set>. In addition to these restrictions, state tran-
sitions are limited to <quad set>s whose names appear in a list
which is the value of a global identifier, QUADSEARCHLIST. There
may also be a list of system <quad>s, FREEQUADS, which the user
has access to, and which is always searched unless the flag NO-
FREEQUADS is set to T. This flag is accessible by the user. All
statements in this document about transitions are understood to
acknowledge these rules. Purely as a reminder, we may therefore

- 62 -

speak of "acceptable" <quad>s, "acceptable" <state>s, "accepta-
ble" transitions, and so on.

Suppose the process is in <state> S and finds a <quad>,

(S <test> <act> S' <quad name>)

in a <quad set>,

(<quad set name> <start state> (*1 *2 ... *K) <quad list>)

and that the current values of the registers *1, *2, ... , *K are
the S-expressions v1, v2, ... , vK, respectively. Then the fol-
lowing PROG is generated and evaluated:

(PROG (*1 *2 ... *K)
(SETQ *1 'vl)
(SETQ *2 'v2)

(SETQ *K 'vK)
(RETURN

(COND (<test>
<act>
(LIST <quad> (LIST *1 *2 ... *K))))))

Given the <values> associated with the <registers>, here is the
function which generates the transition program for a specified
<quad>, and the function which generates its (varying number of)
SETQs.

(DEFPROP GENERATEIMMTRANSPROGRAM
(LAMBDA (VALUES REGISTERS QUAD)
(EVAL
(PROG (X)

(SETQ X
(APPEND
(LIST 'PROG REGISTERS)
(MAKESETQS VALUES REGISTERS)
(LIST (LIST 'RETURN

(LIST 'COND
(LIST (TEST QUAD)

(ACT QUAD)
(LIST 'LIST

'QUAD
(CONS 'LIST

REGISTERS))))

(COND [TRANSPRINTFLAG (SPRINT X)])
(RETURN X))))

EXPR)
(DEPPROP MAKESETQS

(LAMBDA (VALUES REGISTERS)
(COND

-63-

[(NULL REGISTERS) NIL]
[(CONS (LIST 'SETQ

(CAR REGISTERS)
(COND [(OR (NUMBERP (CAR VALUES)]

(STRINGP (CAR VALUES)J)

(CAR VALUES)]
[(LIST 'QUOTE (CAR VALUES))]))

(MAKESETQS (CDR VALUES) (CDR REGISTERS)))]))
EXPR)

The identifier TRANSPRINTFLAG is used to enable the printing of
the programs that are generated and EVALuated to decide the
question of transition. MAKESETQS terminates on REGISTERS since
VALUES comes from another context in the system. In general
there may be more values than registers, but there will never be
more registers than values.

The transition process is thus implemented so that if the
<test> fails, NIL is returned, and if the <test> succeeds, an
<item> is returned containing the successful <quad> and the

(possibly new) values, vl, v2, ... , vK. GENERATEIMMTRANSPROGRAM
generates and evaluates the PROG expression which returns NIL oran <item>.

<item> ::= (<quad> <values>)

If <test> or <act> contains any references to *0 or to the back-
ground, these references are not protected. PROGrams like these
are <immediate transition program>s.

E. World Lines

A <world line> contains the history of a computation and its
current configuration. The <top> of a <world line> contains
control information, and its <tail> is a list of <quad>s already
successfully processed, from the most recent back to the initial
<quad>. The <tail> of a <world line> is followed by its
ancestor, and all CDRs of that list are also its ancestors.

<world line> ::= (<world line name> <state>
<values>
<wait flag> <wait condition>
<active flag> <tail>
<ancestors>)

<values> ::= <list of S-expressions>
<wait flag> WAITING I ACTIVE

<active flag> SUSPENDED I ACTIVE
<wait condition> ::= <S-expression>

<ancestors> ::= ,list of <world line name>s>

A <world line>'s <state> is the next state into which it will try
to transition. A <world line>'s <values> are its current values
for the registers. <ancestors> is a list of the names of the
<world line>'s ancestors. Each time a <world line> successfully

- 64 -

transitions to a new state, the resulting <world line> is given a
new name, and the <ancestors> of the new <world line> is got by
CONSing the old <world line>'s name into the old <world line>'s
<ancestors>. A <world line> is said to be suspended if its <ac-
tive flag> is SUSPENDED, and otherwise it is either waiting or
active. A <world line> which is not suspended is waiting if its
<wait flag> is WAITING, and otherwise it is active. Here are the
selectors and predicates for <world line>s.

(DEFPROP WORLDLINENAME (LAMBDA (X) (CAR X)) EXPR)
(DEFPROP WORLDLINESTATE (LAMBDA (X) (CADR X)) EXPR)
(DEFPROP WORLDLINEVALUES (LAMBDA (X) (CADDR X)) EXPR)
(DEFPROP WAITFLAG (LAMBDA (X) (CADDDR X)) EXPR)
(DEFPROP WAITCONDITION (LAMBDA (X) (CAR (CDDDDR X))) EXPR)
(DEFPROP ACTIVEFLAG (LAMBDA (X) (CADR (CDDDDR X))) EXPR)
(DEFPROP WORLDLINEQUADS

(LAMBDA (X) (CADDR (CDDDDR X)))
EXPR)
(DEFPROP ANCESTORS
(LAMBDA (X) (CADDDR (CDDDDR X)))
EXPR)
(DEFPROP ACTIVE?
(LAMBDA (WLINE)
(AND (NOT (WAITING? WLINE)] (NOT (SUSPENDED? WLINE)]))

EXPR)
(DEFPROP SUSPENDED?
(LAMBDA (WORLDLINE)
(EQ (ACTIVEFLAG WORLDLINE) 'SUSPENDED))

EXPR)
(DEFPROP WAITING?
(LAMBDA (WORLDLINE)
(AND [EQ (WAITFLAG WORLDLINE) 'WAITING]

[EQ (ACTIVEFLAG WORLDLINE) 'ACTIVE]))
EXPR)

F. Transition Time

A certain temporal point in the computational process is
called transition time, and the transitions from <state> to
<state> are completel-y-efined by specifying what happens at
transition time. All else is governed by the LISP evaluator,
EVAL. First we describe a world line transition, the transition
mechanism for one <world line>.

Suppose that an active <world line> has <state> S at
transition time. A list of acceptable <quad>s is assembled, each
of whose <current state>s is S. All the candidate <quad>s whixch
come from one <quad set> are kept together, and if there is an
<ELSE quad> it is distinguished.

<candidate quads> ::= (<quad> <quad> ... <ELSE quad>)

That is, an <ELSE quad> appears, if at all, only at the end of
this list. If none of the other <quad>s in the <quad list>
transitions successfully, then and only then is the <ELSE quad>

-65-

tried. The <immediate transition program>s for all these <quad>s
ire assembled and EVALuated. The result in each case will either
3e NIL or it will be an <item> containing the <quad> and the
register <values> that the <quad>'s processing has produced. All
these lists are APPENDed, which makes the failures "go away", so
-hat what remains is a list of items to be taken two at a time.
"ELSE quad>s are not processed at all unless all other <quad>s
.rom the same set and with the same <current state> have failed.
iere are the functions which find acceptable <quad>s. GETACCEP-
£ABLEQUADS determines if the <world line>'s state is a <simple
state> or a <full state>, and conducts the search for quadruples
iccordingly. It returns as value a <list of<quad list>s>.

<list of <quad list>s> ::= (<quad list> <quad list> ...)

rhe <state> passed to GETACCEPTABLEQUADS1 is a <simple state> and
the value returned is a <list of <quad list>s>. If the global
flag, NOFREEQUADS, is T, then the list of FREEQUADS is not
searched. The function *APP disposes of NILs, the results of
insuccessful attempts to transition.

(DEFPROP GETACCEPTABLEQUADS
(LAMBDA (STATE SEARCHLIST)

(COND ((CONSP STATE)
(FIXCANDIDATES

(SEARCHQUADSET
STATEPARTOFFULLNAME STATE)

(SETPARTOFFULLNAME STATE)))]
[(GETACCEPTABLEQUADS1 STATE SEARCHLIST)]))

EXPR)
(DEFPROP GETACCEPTABLEQUADS1
(LAMBDA (STATE SEARCHLIST)
(COND [(NULL SEARCHLIST)

(COND [NOFREEQUADS NIL]
[(SEARCHQUADSET STATE FREEQUADS)])]

[(*APPEND (SEARCHQUADSET
STATE
(QUADLIST (EVAL (CAR SEARCHLIST))))

(GETACCEPTABLE QUADS 1
STATE
(CDR SEARCHLIST)))]))

EXPR)
rhe <state> passed to SEARCHQUADSET must be a <simple state>.
The function returns a <quad list>
whose last <quad> may, but need not be, an <ELSE quad>.

(DEFPROP SEARCHQUADSET
(LAMBDA (STATE QUADSET)
(COND [(NULL QUADSET) NIL]

((EQ (STARTSTATE (CAR QUADSET)) STATE)
(CONS (CAR QUADSET)

(SEARCHQUADSET STATE (CDR QUADSET)))]
[(SEARCHQUADSET STATE (CDR QUADSET))]))

EXPR)
- 66 -

After all possible transitions have been attempted, a new
<worldline> is constructed for each item returned, by CONSing
that item's <quad> to the <tail> of the <world line>, and by in-
stalling the values associated with the registers after the
<quad> has been processed. If no items are returned, then the
<world line> is aborted. Aborted <world line>s "go away" and are
irrecoverable. If transitioning fails because <candidate quads>
is empty, the <world line> is put on the list DEADWORLDS. The
process then returns to transition time. This describes the
processing for a single <world line>. Note that the processing
of a single <world line> may produce several new <world line>s.
In general, the process may encounter, at transition time, a list
of <world line>s, so that the process is, from a single <world
line> point of view, non-deterministic. All these <world line>s
are the elements of a list called CR (Control Register).

At transition time, then, a <world line> transition takes
place for each <world line> in CR, and all the resulting <world
line>s are entered into a new CR. This process is called CR-
transition. Here are the functions which administer CR-transi-

tion. TRANSITION1 processes lists of <quad>s and TRANSITIO"
calls TRANSITION1 and distinguishes an <ELSE quad> from other
<quad>s. The function TRANSITION returns an <item sequence>.

<item sequence> ::= (<quad> <values> <quad> <values> ...)

where each consecutive <quad> <values> pair is the result of a
successful state transition. This is the function that deter-
mines whether or not to attempt an <ELSE quad> transition.

(DEFPROP TRANSITION
(LAMBDA (WORLDLINE QUADLIST)
(COND [(NOT (ACTIVE? WORLDLINE)) NIL]

[(PROG (A B)
(SETQ B (ELSEQUADIN QUADLIST))
(SETQ A

(TRANSITION1 WORLDLINE
(NOELSE QUADLIST)))

(RETURN (COND ((NULL A)
(TRANSITIONI WORLDLINE

(LIST B))][AI)))]))
EXPR)
(DEFPROP TRANSITION1
(LAMBDA (WORLDLINE QUADLIST)
(*APP

(MAPCAR (FUNCTION
(LAMBDA (X)
(GENERATEIMMTRANSPROGRAM

WORLDLINEVALUES WORLDLINE)
REGISTERLIST
(EVAL (SETPARTOFFULLNAME (QUADNAME X))))

x)))
QUADLIST)))

EXPR)
- 67 -

7 7 -. I

(DEFPROP *APP
(LAMB DA (X)

(COND ((NULL X) NIL)
((NULL (CAR X)) (*APP (CDR X)f
[(*APPEND (CAR X) (*APP (CDR X)))]))

E XPR)

(DEFPROP ELSEQUADIN
(LAMBDA (X)

(COND ((NULL X) NIL]
((ISELSEQUAD? (CAR X)) (CAR X)1
((ELSEQUADIN (CDR X))I))

E XPR)
(DEFPROP NOELSE

(LAMBDA (X)
(COND [(NULL X) NIL]

(AISELSEQUAD? (CAR X)) (CDR X)1
[(CONS (CAR X) (NOELSE (CDR X)))]))

EXPR)

The function MAKENEWWORLDLINES takes an <item sequence> and the
<world line> which spawned it as arguments, and generates a list
of new <world line>s.

(DEFPROP MAKENEWWORLDLINES
(LAMBDA (ITEMS WORLDLINE)
(COND [(NULL ITEMS) NIL]

[(CONS (LIST (INTERN (GENSYM))
(NEXTSTATE (CAR ITEMS))
(CADR ITEMS)
(WAITFLAG WORLDLINE)
(WAITCONDITION WORLDLINE)
(ACTIVEFLAG WORLDLINE)

(CONS (QUADNAME (CAR ITEMS))
WORLDLINEQUADS WORLDLINE))

(CONS (WORLDLINENAME WORLDLINE)
(ANCESTORS WORLDLINE)))

(MATENEWWORLDLINES (CDDR ITEMS) WORLDLINE))])

E XPR)

The function ALLNEWWORLDLINES scans a list of active <world
line>s and generates the list of new <world line>s spawned by
them.

(DEFPROP ALLNEWWORLDLINES
(LAMBDA (WORLDLINES)

(*APP
(MA PCAR
(FUNCTION
(LAMBDA (X)
(MAKENEWWORLDLINES
(rOND [(TRANSITION X

(GETACCEPTABLEQUADS
WORLDLINESTATE X)
-68-

QUADSEARCHLIST)) I
[(SETQ DEADWORLDS (CONS X DEADWORLDS)) NIL])

x)))
WORLDLINES)))

EXPR)

After each CR transition, all those <world line>s which are
waiting are wait processed. A waiting <world line> is wait pro-
cessed by EVAuating its <wait condition>. If the value returned
is NIL the <world line> is left waiting. Otherwise its <wait
flag> is set to ACTIVE.

A full transition is then a two stage process, a sweep of
all act-ve <world line>s which are not waiting, and a sweep of
all waiting <world line>s.

G. Interrupting

A global identifier, INTERRUPTSTATES, allows the user to
interrupt the process. Its value is a list of <state>s or <full
state>s. At the completion of each full transition, the <state>
in each <world line> is checked for membership in the INTERRUPT-
STATES list. CR is searched in CDR order for this purpose. When
a <state> in INTERRUPTSTATES occurs, the process is suspended and
that <world line>'s name is printed out with a meaningful mes-
sage. The user may then do any of the things appropriate for
user mode. These include suspending a <world line>, reinstating
a <world line>, deleting a <world line>, initiating a new <world
line>, adding or changing <quad set>s, and so on. Or the user
may simply return control to the processor, which will then con-
tinue to search for interrupts. INTERRUPTSTATES may be changed
by the action of the <quad> transitions. When all interrupt
processing is completed, the processor returns to transition
time. If the global variable INTERRUPT has the value NIL, then
no interrupt processing takes place. If the global variable IN-
TERRUPTWAIT has any value other than NIL, interrupt processing
will take place just after the sweep of active <world line>s as
well as just after the sweep of all waiting <world lines>. If
INTERRUPT is NIL and INTERRUPTWAIT is not NIL, then interrupt
processing takes place only just before the sweep of waiting
<world line>s. WAITSWEEP examines each waiting world line in CR,
and if its <waitcondition> evaluates to NIL it is left waiting.
Otherwise its <wait flag> is set to ACTIVE. <wait condition>s
are EVALuated in an environment which includes the register va-
lues for the <world line>.

The function WAITSWEEP examines each waiting <world line> to
see if its <wait condition> EVALuates to T. It appropriately
changes the <world iine>'s <wait flag>.

(DEFPROP WAITSWEEP
(LAMBDA NIL
(SETQ CR
(MAPCAR

69 -

Li -... " ,]h m. m

(FUNCTION
(LAMBDA (WORLDLINE)
(COND [(AND [EQ (ACTIVEFLAG WORT.DLINE) 'ACTIVE]

[EQ CWAITFLAG WORLLILIt-E) 'WAITING]
[CAR (GENNNNNNN1* WORLiMLINEVALUES WORLDL

INE) (MAKEWOP.LD-.IkvREG ISTERS
WORLDLINE) (LIST NIL

(Wi.ITCONDITION WO
RLDLINE) NIL

NIL
NIL))]) '

(ACTIVATE WORLDLINE)]
[WORLDLINE])))

CR)))
E XPR)
(DEFPROP MAKEWORLDLINEREGISTERS

(LAMBDA (WLINE)
((FUNCTION

(LABEL MK
(LAMBDA (X REG)

(COND [(NULL X) NIL]
[(CONS (CAR REG) (MK< (CDR X) (CDR REG)))])

WORLDLINEVALUES WLINE)
REG))

EXPR)
(DEFPROP ACTIVATE
(LAMBDA (WORLDLINE)
(LIST (WORLDLINENAME WORLDLINE)

WORLDLINESTATE WORLDLINE)
WORLDLINEVALUES WORLDLINE)

'ACTIVE
WAITCONDITION WORLDLINE)
ACTIVEFLAG WORLDLINE)
WORLDLINEQUADS WORLDLINE)))

EXPR)

And here is KOTSU's top level, with its important supporting
function, ONANDON.

(DEFPROP ONANDON (LAMBDA NIL NEXTSTEP) EXPR)

(DEFPROP GOKOTSU
(LAMBDA NIL

(PROG (X SUSPENDED WAITING ACTIVE INTERRUPT
INTERRUPTSTATES INTERRUPTWAIT NEXTSTEP
QUADSEARCHLIST FREEQUADS NOFREEQUADS STUFF ELSE
TRANSPRINTFLAG INTERRUPTED REG)

(PRINC "KOTSU GETTING STARTED!-)
(SETO ELSE T)
(SETQ REG

'(*1 *2 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13
*14 *15 *16))

(T ERPR I)
INITIALIZE

-70-

(SETIT 'DEBUGMODE)
(SETIT 'DEADWORLDS)
(SETIT 'QUADSEARCHLIST)
(SETIT 'NOFREEQUADS)
(SETIT 'CR)
(SETIT 'FREEQUADS)
(SETIT 'TRANS PR INTF LAG)
(SETIT 'INTERRUPT)
(SETIT 'INTERRUPTSTATES)
(SETIT 'INTERRUPTWAIT)
(SETQ NEXTSTEP 'WORLDLINESWEEPING)
(GO INTERRUPTING)

WORLDLINESWEEPING
(N EXT)
(COND [(NOT INTERRUPT) (GO WAITSWEEPING)1)
(SETQ NEXTSTEP 'WAITSWEEPING)
(GO INTERRUPTING)

WAIT SWEEPING
(WAITSWEEP)
(COND [(NOT INTERRUPTWAIT) (GO WORLDLINESWEEPING)])
(SETQ NEXTSTEP 'WORLDLINESWEEPING)
(GO INTERRUPTING)

INTERRUPTING
(COND
[DEBUGMODE (GO INTERRUPTING1)1
[(NULL

(SETO INTERRUPTED
(*APPSIES
(MAPC AR
(FUNCTION

(LAMBDA (WLINE)
(COND [(MEMO (WORLDLINESTATE WLINE)

INTERRUPTSTATES)
WLINE]
[NIL])))

CR))))
(GO (ONANDON))])

INTERRUPTING1
(TERPRI)
(PRINC -INTERRUPT MODE!")
(T ERPR I)
(PRINC "WHAT NOW:")
(SETO X (READ))
(COND [(EQ X 'CONTINUE) (GO CONTINUE)]

[(EQ X 'STOP) (RETURN 'MU!)1
[(EQ X 'RESTART) (GO RESTART)]
[(E Q X 'E V) (GO EV)]I
[(EQ X 'HOW) (SHOWHOWITIS)l
[(PRINC "TYPE ONE OF: CONTINUE, STOP, RESTART,

EV, HOW.") (TERPRI)
(GO INTERRUPTING1)])

(GO INTERRUPTINGI)
CONTINUE

(PRINC "TRANSITIONING AGAIN.")
(TERPRI)

- 71-

(GO (ONANDON))
RESTART

(GO INITIALIZE)
EV (PRINC "EV WHAT?")

(TERPRI)
(SPRINT (EVAL (READ)))
(TERPRI)
(GO INTERRUPTING)))

EXPR)
(DEFPROP NEXT
(LAMBDA NIL (SPRINT (SETQ CR (ALLNEWWORLDLINES CR))))
EXPR)

The handling of interrupted <world line>s has not been
checked out and is not included here. This process will be in-
stalled just before the label INTERRUPTING1.

SETIT initializes a global variable by adding a ":" to its
name for a prompt symbol, and then by SETting that variable to
the result of (READ). SHOWHOWITIS displays the values of all
these global variables.

(DEFPROP SETIT
(LAMBDA (X)
(PROG NIL (PRINC (CONCAT X ":")) (SET X (READ))))

EXPR)
(DEFPROP SHOWHOWITIS
(LAMBDA NIL
(PROG NIL

(MAPCAR (FUNCTION SHOWOUT)
'(DEADWORLDS QUADSEARCHLIST NOFREEQUADS

FREEQUADS TRANSPRINTFLAG
INTERRUPTSTATES INTERRUPTWAIT
ELSE))

(PRINC "CR:")
(SPRINT CR 12)))

EXPR)
(DEFPROP SHOWOUT
(LAMBDA (X)
(PROG NIL

(PRINC (CONCAT X ":"))
(SPRINT (EVAL X) 8)
(TERPRI)))

EXPR)

DISPLAY, DISPLAY1 and SHORTEN form a set of functions to display
a <world line> in an organized format on the terminal.

(DEFPROP DISPLAY

(LAMBDA (NAME)
(MAPCAR (FUNCTION (LAMBDA (X) (DISPLAY1 NAME X))) CR))

EXPR)
(DEFPROP DISPLAYI
(LAMBDA (NAME X)

- 72 -

(SPRINT (COND [(EQ NAME (WORLDLINENAME X)) (SHORTEN X)]))
)

EXPR)
(DEFPROP SHORTEN
(LAMBDA (X)

(LIST (WORLDLINENAME X)
WORLDLINESTATE X)
WORLDLINEVALUES X)
WAITFLAG X)
WAITCONDITION X)
ACTIVEFLAG X)

(CAR (WORLDLINEQUADS X))
WORLDLINENAMES X)))

EXPR)

H. Status Changes

An important family of facilities in this system allows the

modification of the status of Oarticular <world line>s in the u-
niverse, where the status of a <world line> is determined by
whether that <world line> is waiting, active or suspended. In

addition, there is a DEADWORLDS register which comes to contain
all those <world line>s which were active at transition time but
were unable to complete a transition to a new <state>. There are

facilities to move a <world line> arbitrarily from DEADWORLDS to
CR or from CR to DEADWORLDS. It will be useful to make such a

move if other changes have also occurred elsewhere in the uni-
verse. The user may initiate these moves at interrupt time, or
they may occur under program control.

A particular <world line> may be identified by name, but

since the computations allowed may be non-deterministic that name
may come to be associated with a number of distinct descendents
of the original <world line>. To accommodate these realities we
have the notion of a <tribe>. A <tribe> is expressed as a <world

line name> and is the set of all those <world line>s whose <an-
cestors> contain that <world line name>.

The decision to move a <world line> between CR and DEAD-
WORLDS can in general be made contingent upon the outcome of E-
VALuating a specified expression called a <condition>. A <con-

dition> is not met if it EVALuates to NIL and is met if it EVAL-
uates to anyth-ng-else. Thus, in general, movement of <world
line>s only takes place if a specified <condition> is met. One

can further restrict the movement of <world line>s between CR and
DEAD. Among those <world line>s belonging to a specified <tribe>

one can specify that only those which are active are to be moved,

or that only those which are suspended are to be moved, or only
those which are waiting.

In a related facility a <world line> may be left on CR, but

its status may be changed. One can command that all those active

<world line>s belonging to a specified <tribe> are to be made
waiting, or are to be made suspended. Or else that all "tribal"

<world line>s that are waiting are to be made active. And these
- 73 -

changes can also be made contingent upon a certain <condition>'s
being met.

Finally, all these changes to a <world line>'s status can be
implicated with the provisional character of changes to the va-
lues of the registers, *1, *2, ... A specified <condition> of
sufficient complexity may make changes to the values of certain
registers, and it is an option to determine whether or not these
register values are to be protected in case the <condition> is
not met.

All these realities are concretized in a function that takes
four arguments.

(MAYIFYWORLDLINES TRIBE CONDITION ACTION PROTECTION)

The argument TRIBE is the <tribe> name. CONDITION is any LISP

S-expression. It is to be EVALuated once for each tribal <world
line> in WORLDLINES and in the presence of the binding of that
<world line>'s values to the registers. PROTECTION is T or NIL,
where T indicates that register values are to be protected if the
<condition> fails, and NIL indicates that changes to these reg-
isters are to be made a permanent part of the <world line>
whether or not the <condition> is met. WORLDLINE is normally CR
but it may be DEADWORLDS or any other list of <world line>s for
that matter.

ACTION specifies further restrictions to the status of a
<world line> in WORLDLINES. Action is normally the name of a
function which accepts a <world line> as its argument and gives
back as value that <world line> with its status changed.

We turn now to a detailed review of the LISP functions which
implement these status changes.

The following eight functions take a <world line> as argu-
ment and give as value that <world line> with its status appro-
priately changed, but only subject to a certain kind of restric-
tion. SUSPEND! only suspends an active <world line>, and
DESUSPEND!activates only a suspended <world line>. WAITPLEASE!
sets only an active <world line> waiting, and UNWAIT! activates
only waiting <world line>s. On the other hand, SUSPENDALLCASES!,
DESUSPENDALLCASES,, WAITPLEASEALLCASES! and UNWAITALLCASES!
install the specified changes in a <world line> regardless of its
original status. The function NEWVALUES inserts a new list of
<values> into a <world line>.

(DEFPROP SUSPEND!
(LAMBDA (WORLDLINE)
(COND f(ACTIVE? WLINE)

(LIST (WORLDLINENAME WORLDLINE)
WORLDLINESTATE WORLDLINE)
WORLDLINEVALUES WORLDLINE)
WAITFLAG WORLDLINE)
WAITCONDITION WORLDLINE)

- 74 -

'SUSPENDED
(WORLDLINEQUADb WORLDLINE)
ANCESTORS WORLDLINE))l

[WLINEI))
EXPR)

(DEFPROP DESUSPEND!
(LAMBDA (WORLDLINE)

(COND ((SUSPENDED! WLINE)
(LIST (WORLDLINENAME WORLDLINE)

(WORLDLINESTATE WORLDLINE)
(WORLDLINEVALUES WORLDLINE)
(WAITFLAG WORLDLINE)
(WAITCONDITION WORLDLINE)
'ACTIVE
(WORLDLINEQUADS WORLDLINE)
(ANCESTORS WORLDLINE))]

[WLINE]))
EXPR)
(DEFPROP WAITPLEASE!
(LAMBDA (WORLDLINE)
(COND [(ACTIVE? WLINE)

(LIST CWORLDLINENAME WORLDLINE)
CWORLDLINESTATE WORLDLINE)
CWORLDLINEVALUES WORLDLINE)
'WAITING
(WAITCONDITION WORLDLINE)
(ACTIVEFLAG WORLDLINE)
(WORLDLINEQUADS WORLDLINE)
ANCESTORS WORLDLINE))]

[WLINE]))
EXPR)

(DEFPROP UNWAIT!
(LAMBDA (WORLDLINE)
(COND ((WAITING? WLINE)

(LIST (WORLDLINENAME WORLDLINE)
(WORLDLINESTATE WORLDLINE)
(WORLDLINEVALUES WORLDLINE)
'ACTIVE
(WAITCONDITION WORLDLINE)
(ACTIVEFLAG WORLDLINE)
(WORLDLINEQUADS WORLDLINE)
(ANCESTORS WORLDLINE))]

[WLINE]))
E XPR)
(DEFPROP SLJSPENDALLCASES!
(LAMBDA (;RLDLINE)
(LIST CWORLDLINENAME WORLDLINE)

(WORLDLINESTATE WORLDLINE)
(WORLDLINEVALUES WORLDLINE)
(WAITFLAG WORLDLINE)
CWAITCONDITION WORLDLINE)

'SUSPENDE~D
CWORLDLINEQUADS WORLDLINE)
ANCESTORS WORLDLINE)))

EXPR)
-75-

(DEFPROP DESUSPENDALLCASES!
(LAMBDA (WORLDLINE)
(LIST (WORLDLINENAME WORLDLINE)

(WORLDLINESTATE WORLDLINE)
(WORLDLINEVALUES WORLDLINE)
(WAITFLAG WORLDLINE)
(WAITCONDITION WORLDLINE)
'ACTIVE
(WORLDLINEQUADS WORLDLINE)
ANCESTORS WORLDLINE)))

E XPR)
(DEFPROP WAITPLEASEALLCASES!
(LAMBDA (WORLDLINE)
(LIST (WORLDLINENAME WORLDLINE)

(WORLDLINESTATE WORLDLINE)
(WORLDLINEVALUES WORLDLINE)
'WAITING
(WAITCONDITION WORLDLINE)
(ACTIVEFLAG WORLDLINE)
(WORLDLINEQUADS WORLDLINE)

ANCESTORS WORLDLINE)))
E XPR)

(DEFPROP UNWAITALLCASES!
(LAMBDA (WORLDLINE)

(LIST (WORLDLINENAME WORLDLINE)
WORLDLINESTATE WORLDLINE)
(WORLDLINEVALUES WORLDLINE)
'ACTIVE
(WAITCONDITION WORLDLINE)
(ACTIVEFLAG WORLDLINE)
(WORLDLINEQUADS WORLDLINE)
(ANCESTORS WORLDLINE)))

EXPR)
(DEFPROP NEWVALUES
(LAMBDA (WORLDLINE)
(LIST (WORLDLINENAME WORLDLINE)

(WORLDLINESTATE WORLDLINE)
VALUES
(WAITFLAG WORLDLINE)
(WAITOONDITION WORLDLINE)
(ACTIVEFLAG WORLDLINE)
(WORLDLINEQUADS WORLDLINE)
ANCESTORS WORLDLINE)))

E XPR)
(DEFPROP GENNNNNNNT*
(LAMBDA (VALUES REGISTERS QUAD)
(EVA L

(PROG (RESULT)
(SETO RESULT

(APPEND (LIST 'PROG REGISTERS)
(MAKESETQS VALUES REGISTERS)
(LIST (LIST 'RETURN

(LIST 'LIST
(TEST QUAD)
(CONS 'LIST

-76 -

REGISTERS))))

(COND [TRANSPRINTFLAG (SPRINT RESULT)])

(RETURN RESULT))))

EXPR)

The function GENNNNNNNI* yields a list of two things - the

result of EVALuating a <condition> in an environment in which the

<world line>'s values are bound to the registers, and the possi-

bly changed values themselves. We might call this a <condition

item>.

<condition item> ::= (<S-expression value> <values>)

Register protection is indicated by passing a non-NIL value for

PROTECTION to the function MAYIFYWORLDLINES.

(DEFPROP MAYIFYWORLDLINES
(LAMBDA (TRIBE CONDITION ACTION PROTECTION)

(COND
[(TRANSMIGRATE? ACTION)
((CAR ACTION) TRIBE CONDITION (CDR ACTION) PROTECTION)]

[(SETQ CR
(MAPCAR
(FUNCTION
(LAMBDA (WLINE)

(COND
[(INTRIBE? WLINE TRIBE)

(PROG (RESULT)
(SETQ RESULT

(GENNNNNNN1* (WORLDLINEVALUES WLINE)
(MAKEWORLDLINEREGISTERS W

LINE) (LIST NIL CONDITION NIL
NIL NIL)))

(RETURN (COND [(CAR RESULT)
(NEWVALUES (CADR RESULT)

(ACTION WLINE))]

(PROTECTION WLINE]
[(NEWVALUES (CADR RESULT)

WLINE)]))]

(WLINEI)))
CR))1))

EXPR)

(DEFPROP TRANSMIGRATE? (LAMBDA (X) (CONSP X)) EXPR)

The outer condition determines whether the status change

consists in 3 move between CR and DEADWORLDS. If so, the result

is determined by the function TRANSMIGRATION. Otherwise a spec-

ified function is mapped to each <world line> in WORLDLINES, as-

sembling a new list of <world line>s. This inner function ap-

plies only to <world line>s belonging to the tribe. Given that

distinction, it has three cases. The first condition holds when

the <condition> EVALuates to non-NIL in the presence of the

<world line>'s register <values>, and it returns the <world line>
- 77 -

with its <values> reflecting possible changes to its <values> as
well as with its status appropriately modified. If CONDITION has
EVALuated to NIL the second case sees if the registers are to be
protectud. If so, it returns the <world line> unchanged. In the
third case, where the registers are not to be protected, the
possibly new register values are installed.

Status changes are themselves incorporated by applying the
argument ACTION to the <world line>. ACTION must therefore be
either the name of a function or else a lambda expression, in
either case denoting a function with one argument.

The part of the universe that is stored in CR is what is
changed by a call on MAYIFYWORLDLINES. The function MAKEWORLD-
LINEREGISTERS uses the <world line>'s <values> list to construct
a list of registers. The function INTRIBE? asks if the speci-
fied <world line> belongs to the <tribe>. That is, does the
<tribe> name belong the <world line>'s <ancestors>?

(DEFPROP MAKEWORLDLINEREGISTERS
(LAMBDA (WLINE)
((FUNCTION

(LABEL MK
(LAMBDA (X REG)

(COND [(NULL X) NIL]
[(CONS (CAR REG) (MK (CDR X) (CDR REG)))])

WORLDLINEVALUES WLINE)
REG))

EXPR)
(DEFPROP INTRIBE?

(LAMBDA (WORLDLINE TRIBE)
(MEMO TRIBE (ANCESTORS WORLDLINE)))

EXPR)

TRANSMIGRATE determines whether the action involves movement
between CR and DEAD. The third argument to MAYIFYWORLDLINES will
in these cases be a dotted pair whose CAR is one of TRANSCRTO-
DEAD/TRANSDEADTOCR, and whose CDR is one of
ACTIVE?/SUSPENDED?/WAITING?/ALL. This status is used to restrict
<world line>s for transfer. The function ALL? is the constant
function whose argument is a <world line> and whose value is al-
ways T. TRANSCRTODEAD and TRANSDEADTOCR are PROGs, and they are
exactly alike except for an interchange of the names CR and DEAD,
and their local cognates. The COND after NEXT selects only tri-
bal <world line>s having the appropriate status. The SETO after
ONN generates the result of EVALuating the <condition> in the
presence of register bindings. The final COND determines whether
to move the <world line> and how to dispose of changes to the
register <values> for that <world line>.

(DEFPROP TRANSCRTODEAD
(LAMBDA (TRIBE CONDITION STATUS PROTECTION)

- 78 -

_7&

(PROG (LOCALDEAD RESULT IT)
(SETQ LOCALCR CR)

NEXT (COND [(NULL LOCALCR) (RETURN NIL)]
[(AND [INTRIBE? (SETQ IT (CAR LOCALCR)) TRIBE]

[STATUS IT])

(GO ONN)]
[(SETQ CR (CONS IT CR))
(SETO LOCALCR (CDR LOCALCR))
(GO NEXT)])

ONN (SETO RESULT
(GENNNNNNN1* (WORLDLINEVALUES IT)

(MAKEWORLDLINEREGISTERS IT)
(LIST NIL CONDITION NIL NIL NIL))

)
(COND [(CAR RESULT)

(SETO DEAD
(CONS (NEWVALUES (CADR RESULT) IT)

DEAD))

(SETQ LOCALCR (CDR LOCALCR))
(GO NEXT)]

[PROTECTION (SETO CR (CONS IT CR))
(SETQ LOCALCR (CDR LOCALCR))]

[(SETQ CR
(CONS (NEWVALUES (CADR RESULT) IT) CR))

(GO NEXT)])))
EXPR)

(DEFPROP TRANSDEADTOCR
(LAMBDA (TRIBE CONDITION STATUS PROTECTION)
(PROG (LOCALDEAD RESULT IT)

(SETO LOCALDEAD DEAD)
NEXT (COND [(NULL LOCALDEAD) (RETURN NIL)]

[(AND [INTRIBE? (SETO IT (CAR LOCALDEAD))

TRIBE]
[STATUS IT])

(GO ONN)]
((SETO DEAD (CONS IT DEAD))
(SETO LOCALDEAD (CDR LOCALDEAD))

(GO NEXT)])
ONN (SETO RESULT

(GENNNNNNN1* (WORLDLINEVALUES IT)
(MAKEWORLDLINEREGISTERS IT)
(LIST NIL CONDITION NIL NIL NIL))

)
(COND [(CAR RESULT)

(SETO CR
(CONS (NEWVALUES (CADR RESULT) IT) CR))

(SETO LOCALDEAD (CDR LOCALDEAD))

(GO NEXT)]
(PROTECTION (SETO DEAD (CONS IT DEAD))

(SETO LOCALDEAD (CDR LOCALDEAD))1
((SETQ DEAD

(CONS (NEWVALUES (CADR RESULT) IT)

DEAD))

(GO NEXT)])))
EXPR)

- 79 -

The functions TRANSCRTODEAD and TRANSDEADTOCR have not been tes-
ted, but are included here for completeness. The other processes
for status change have been applied successfully to non-trivial
test cases.

The functions MAKE and NAMETHOSE are used to make it easy to
enter quad sets into the system.

(DEFPROP MAKE
(LAMBDA NIL
(PROG (NAME QUADS STATE REG X)

(PRINC "QUAD SET NAME:")
(SETQ NAME (READ))
(SETQ QUADS NIL)

NEXT (PRINC "NEXT QUAD:")
(COND [(NULL (SETQ X (READ))) (GO ON)])
(SETQ QUADS (CONS (FIXACTINQUAD X) QUADS))
(GO NEXT)

ON (PRINC "START STATE:")
(SETQ STATE (READ))
(PRINC "LIST OF ALL REGISTERS:")
(SETQ REG (READ))
(SET NAME

(LIST NAME STATE REG (NAMETHOSE QUADS NAME 1)))

EXPR)
(DEFPROP NAMETHOSE
(LAMBDA (X NAME N)
(COND f(NULL X) NIL]

[(CONS (NCONC1 (CAR X) (CONS NAME N))
(NAMETHOSE (CDR X) NAME (ADD1 N)))]))

EXPR)
(DEFPROP *APPSIES
(LAMBDA (X)
(COND ((NULL X) NIL]

[(NULL (CAR X)) (*APPSIES (CDR X))]
[(CONS (CAR X) (*APPSIES (CDR X)))]))

EXPR)

I. Simple Test Case

We include here a record of a brief sample terminal session.
KOTSU's awkwardness and primitivity are apparent at this stage.
This test shows that the transition mechanism functions as ad-

vertised, and that the status change mechanisms are also func-
tional for the cases shown. Time considerations prevent our in-

cluding a significant application of these new facilities.

R LISP 60
ALLOC? (Y OR N) N
Rutgers/UCI LISP - 06/02/78 [Syracuse University 08/14/80]
*(CSYM G0010)
G0010

*(LINELENGTH 60)
- 80 -

60
*(DSKIN KOTSU) (DSKIN KOTSU1)

* (GOKOTSU)

KOTSU GETTING STARTED!
DESUGMODE :*T
DEADWORLDS:*NIL
QUADSEARCHLIST:* (AATOBB BBTOCC CCTODD)
NOFREEQUADS :*T
CR: *NIL
FREEQUADS:*
TRANSPRINTFLAG:*
INTERRUPT:*
INTERRUPTSTATES :*NIL
INTERRUPTWAIT: *NIL
INTERRUPT MODE!
WHAT NOW:*EV
EV WHAT?
*(SETQ CR CR1)
((G0005 SO (-- "AABBCCDD-) ACTIVE T ACTIVE NIL NIL))
INTERRUPT MODE!
WHAT NOW:*CONTINUE
TRANSITIONING AGAIN.
(PROG (*1 *2)

(SETO *1 "

(SETQ *2 "AABBCCDD")
(RETURN (COND ((BEGINS "AA" *2)

(PROG NIL
(SETO *1 (CONCAT *1 "BB"))
(SETQ *2 (REST (REST *2))))

(LIST QUAD (LIST *1 *2))))))
(PROG (*1 *2)

(SETO *1 fU

(SETO *2 "AABBCCDD")
(RETURN (COND [(BEGINS "BB- *2)

(PROG NIL
(SETO *1 (CONCAT *1 "CC-))
(SETQ *2 (REST (REST *2))))

(LIST QUAD (LIST *1 *2))])))
(PROG (*1 *2)

(SETO *1)

(SETQ *2 -AABBCCDD-)
(RETURN (COND [ELSE (PROG NIL

(SETQ *1
(CONCAT *1 (LEFT *2)))

(SETO *2 (REST *2)))
(LIST QUAD (LIST *1 *2))])))

(PROG (*1 *2)
(SETQ *1)

(SETO *2 'AABBCCDD")
(RETURN (COND [(BEGINS "CC",*2)

(PROG NIL
(SETO *1 (CONCAT *1 "DD"))
(SETO *2 (REST (REST *2))))

-81 -

(PRO (*l*2)(LIST QUAD (LIST *1 *2))1)))

(SETQ *1 I"

(SETQ *2 "AABBCCDD")
(RETURN (COND (ELSE (PROG NIL

(SETO *1
(CONCAT *1 (LEFT *2)))

(SETO *2 (REST *2)))

((GOO3 SO(LIST QUAD (LIST *1 *2))])))

("BB" "BBCCDD")
ACTIVE
T
ACTIVE
((AATOBB . 2))
(G0005))

(G0014 SO
("A" "ABBCCDD")

ACTIVE
T
ACTIVE
((BBTOCC . 1))
(G0005))

(G0015 SO
("A" "ABBCCDD")

ACTIVE
T
ACTIVE
((CCTODD . 1))
(G0005)))

INTERRUPT MODE!
WHAT NOW:*CONTINUE
TRANSITIONING AGAIN.
(PROG (*1 *2)

(SETO *1 "BB")
(SETO *2 "BBCCDD")
(RETURN (COND [(BEGINS "AA" *2)

(PROG NIL
(SETO *1 (CONCAT *1 -BB"))
(SETO *2 (REST (REST *2))))

(LIST QUAD (LIST *1 *2))))))
(PROG (*1 *2)

(SETO *1 -BB")
(SETO *2 "BBCCDD")
(RETURN (COND [(BEGINS "BB" *2)

(PROG NIL
(SETO *1 (CONCAT *1 "CC"))
(SETO *2 (REST (REST *2))))

(LIST QUAD (LIST *1 *2))1)))
(PROG (*1 *2)

(SETO *1 "BB")
(SETO *2 "BBCCDD")
(RETURN (COND [ELSE (PROC NIL

(SETO *1

82 (CONCAT *1 (LEFT *2)))

(SETQ *2 (REST *2)))
(LIST QUAD (LIST *1 *2))])))

(PROG (*1 *2)
(SETO *1 -BB")
(SETO *2 "BBCCDD")
(RETURN (COND [(BEGINS "CC" *2)

(PROG NIL
(SETQ *1 (CONCAT *1 -DD'))
(SETO *2 (REST (REST *2))))

(LIST QUAD (LIST *1 *2))])))
(PROG (*1 *2)

(SETQ *1 "BB")
(SETO *2 "BBCCDD")
(RETURN (COND [ELSE (PROG NIL

(SETO *1
(CONCAT *1 (LEFT *2)))

(SETQ *2 (REST *2)))
(LIST QUAD (LIST *1 *2))])))

(PROG (*1 *2)
(SETO *1 "A")
(SETO *2 "ABBCCDD")
(RETURN (COND [(BEGINS "AA" *2)

(PROG NIL
(SETQ *1 (CONCAT *1 "BB"))
(SETQ *2 (REST (REST *2))))

(LIST QUAD (LIST *1 *2))])))
(PROG (*1 *2)

(SETO *1 "A")
(SETQ *2 "ABBCCDD")
(RETURN (COND [(BEGINS "BB" *2)

(PROG NIL
(SETQ *1 (CONCAT *1 "CC"))
(SETO *2 (REST (REST *2))))

(LIST QUAD (LIST *1 *2))])))
(PROG (*1 *2)

(SETQ *1 "A")
(SETQ *2 "ABBCCDD")
(RETURN (COND rELSE (PROG NIL

(SETQ *1
(CONCAT *1 (LEFT *2)))

(SETQ *2 (REST *2)))
(LIST QUAD (LIST *1 *2))])))

(PROG (*1 *2)
(SETQ *1 "A")
(SETQ *2 "ABBCCDD")
(RETURN (COND [(BEGINS "CC" *2)

(PROG NIL
(SETQ *1 (CONCAT *1 "DD"))
(SETQ *2 (REST (REST *2))))

(LIST QUAD (LIST *1 *2))])))
(PROG (*1 *2)

(SETQ *1 "A")
(SETQ *2 "ABBCCDD")
(RETURN (COND [ELSE (PROG NIL

(SETQ *1
- 83 -

---. .. . --

(CONCAT *1 (LEFT *2)
(SETQ *2 (REST *2)))

(LIST QUAD (LIST *1 *2))])))

(PROG (*1 *2)
(SETQ *1 "A")
(SETQ *2 "ABBCCDD")
(RETURN (COND [(BEGINS "AA" *2)

(PROG NIL
(SETQ *1 (CONCAT *1 "BB"))
(SETQ *2 (REST (REST *2))))

(LIST QUAD (LIST *1 *2))])))

(PROG (*1 *2)
(SETQ *1 "A")

(SETQ *2 "ABBCCDD")
(RETURN (COND [(BEGINS "BB" *2)

(PROG NIL
(SETQ *1 (CONCAT *1 "CC"))

(SETQ *2 (REST (REST *2))))

(LIST QUAD (LIST *1 *2))])))

(PROG (*1 *2)
(SETQ *1 "A")
(SETQ *2 "ABBCCDD")
(RETURN (COND [ELSE (PROG NIL

(SETQ *1
(CONCAT *1 (LEFT *q)))

(SETQ *2 (REST *2)))

(LIST QUAD (LIST *1 *2))])))

(PROG (*1 *2)
(SETQ *1 "A")
(SETQ *2 "ABBCCDD")
(RETURN (COND [(BEGINS "CC" *2)

(PROG NIL
(SETQ *1 (CONCAT *1 "DD"))

(SETQ *2 (REST (REST *2)))

(LIST QUAD (LIST *1 *2))])))

(PROG (*1 *2)
(SETQ *1 "A")
(SETQ *2 "ABBCCDD")
(RETURN (COND [ELSE (PROG NIL

(SETQ *1
(CONCAT *1 (LEFT *2)))

(SETQ *2 (REST *2)))
(LIST QUAD (LIST *1 *2))])))

((G0016 SO
("BBCC" "CCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 2) (AATOBB • 2))

(G0013 G0005))

(G0017 SO
("BBB" "BCCDD")
ACTIVE
T
ACTIVE

- 84 -

((BBTOCC . 1) (AATOBB . 2))
(G0013 G0005))

(G0018 SO
("BBB" "BCCDD")
ACTIVE
T
ACTIVE
((CCTODD . 1) (AATOBB . 2))
(G0013 G0005))

(G0019 SO
("AA" "BBCCDD")

ACTIVE
T
ACTIVE
((BBTOCC . 1) (BBTOCC . 1))
(G0014 G0005))

(G0020 SO
("AA" "BBCCDD")
ACTIVE
T
ACTIVE
((CCTODD . 1) (BBTOCC . 1))
(G0014 G0005))

(G0021 SO
("AA" "BBCCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (CCTODD . 1))
(G0015 G0005))

(G0022 SO
("AA" "BBCCDD")
ACTIVE
T
ACTIVE
((CCTODD . 1) (CCTODD . 1))
(G0015 G0005)))

INTERRUPT MODE!
WHAT NOW:*EV
EV WHAT?
*(SETQ TRANSPRINTFLAG NIL)
NIL
INTERRUPT MODE!
WHAT NOW:*CONTINUE
TRANSITIONING AGAIN.
((G0023 SO

("BBCCC" "CDD")
ACTIVE
T
ACTIVE
(BBTOCC . 1) (BBTOCC. 2) (AATOBB. 2))
(GOO16 G0013 G0005))

(G0024 SO
("BBCCDD" "DD")
ACTIVE

- 85 -

T
ACTIVE
((CCTODD . 2) (BBTOCC . 2) (AATOBB . 2))
(G0016 G0013 G0005))

(G0025 SO
(UBBCCCU "CDD")
ACTIVyE
T
ACTIVE
((CCTODD . 1) (BBTOCC .2) (AATOBB .2))

(G0016 G0013 G0005))
(G0026 SO

("BBBB" "CCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (BBTOCC .1) (AATOBB .2))

(G0017 G0013 G0005))
(G0027 SO

(-BBBB" "CCDD")
ACTIVE
T
ACTIVE
((CCTODD . 1) (BBTOCC .1) (AATOBB .2))

(G0017 G0013 G0005))
(G0028 SO

("BBBB" "CCDD-)
ACTIVE
T
ACTIVE
((BBTOCC . 1) (CCTODD .1) (AATOBB .2))

(G0018 G0013 G0005))
(G0029 SO

("BBBB" "CCDD")
ACTIVE
T
ACTIVE
((CCTODD . 1) (CCTODD .1) (AATOBB .2))

(GOOiB G0013 G0005))
(G0030 SO

("AACC" "CCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 2) (BBTOCC .1) (BBTOCC 1)
(G0019 G0014 G0005))

(G0031 SO
("AAB" "BCCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (BBTOCC .1) (BBTOCC 1)
(G0019 G0014 G0005))

(G0032 SO
("AABW "BCCDD") 8

ACTIVE
T
ACTIVE
((CCTODD .1) (BBTOCC .1) (BBTOCC.1)
(G0019 G0014 G0005))

(G0033 SO
("AACC" -CCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 2) (CCTODD 1) (BBTOCC.1)
(G0020 G0014 G0005))

(G0034 SO
("AAB" "BCCDD")
ACTIVE
T
ACTIVE
((BBTOCC .1) (CCTODD .1) (BBTOCC.1)
(GO020l G0014 G0005))

(G0035 SO
("AAB" "BCCDD")
ACTIVE
T
ACTIVE
((CCTODD .1) (CCTODD .1) (BBTOCC.1)
(GO020 G0014 G0005))

(GO036 SO
("AACC" "CCDD")
ACTIVE
T
ACTIVE
((BBTOCC .2) (BBTOCC . .) (CCTODD.1)
(G0021 G0015 G0005))

(G0037 SO
("AAB" "BCCDD")
ACTIVE
T
ACTIVE
((BBTQCC . 1) (BBTOCC .1) (CCTQDD.1)
(G0021 G0015 GO005))

(G0038 SO
("AAB" "BCCDD")
ACTIVE
T
ACTIVE
((CCTODD 1)(BBTOCC .1) (CCTODD.1)
(G0021 GOO'.5 G0005))

(G0039 SO
("AACC- "CCDD")
A CTI VE
T
ACTIVE
((BBTOCC . 2) (CCTQDD . 1) (CCTODD.1)
(G0022 G0015 G0005))

(G0040 SO
-87 -

("AAB" "BCCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (CCTODD 1) (CCTODD.1)
(G0022 G0015 G0005))

(GO041 SO
("AAB" "BCCDD")

ACTIVE
T
ACTIVE
((CCTODD . 1) (CCTODD .1) (CCTODD.1)
(G0022 G0015 G0005f)

INTERRUPT MODE!
WHAT NOW:*EV
EV WHAT?
* (MAYIFYWORLDLINES 'G0014 T 'SUSPEND! T)
((G0023 SO

("BBCCC" "CDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (BBTOCC 2) (AATOBB .2))

(G0016 G0013 G0005))
(GO024 SO

("BBCCDD" "DD")
ACTIVE
T
ACTIVE
((CCTODD . 2) (BBTOCC 2) (AATOBB 2))
(GOO16 G0013 G0005))

(G0025 SO
("BBCCC" "CDD")
ACTIVE
T
ACTIVE
((CCTODD . 1) (BBTOCC 2) (AATOBB .2))

(G0016 G0013 G0005))
(G0026 SO

("BBBB" "CC DD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (BBTOCC .1) (AATOBB .2))

(G0017 G0013 G0005))
(G0027 SO

("BBBB" "CCDD")
ACTIVE
T
ACTIVE
((CCTODD . 1) (BBTOCC .1) (AATOBB .2))

(G0017 G001.3 G0005))
(G0028 SO

("BBBB" "CCDD")
ACTIVE

AD-A1I0 S09 SYRACUSE UNIV NY SCiM OF COMPUTER AND INFORMATION -- ETC F/6 9/2
INTIERATED PARALLEL PROCESSES: THE ELEMENTS OF MEANING IN LANSU-ETC(U)
NOV 51 E P STORM F30602-17-C-O235

UNCLASSIP1Mfl RADC-TR-6O-379-VOL-4 P.

IIIN

11111 .111

11111.25 4 111111.6

MICROCOPY RESOLUTION TEST CHART

NA INA[[I * 4 PC'. A

T
ACTIVE
((BBTOCC . 1) (CCTODD .1) (AATOBB .2))

(G0018 G0013 GO005))
(G0029 SO

(-BBBB' -CCDD-)
ACTIVE
T
ACTIVE
((CCTODD . 1) (CCTODD .1) (AATOBB .2))

(G0018 G0013 G0005))
(G0030 SO

("AACC" "CCDD")
ACTIVE
T
SUSPENDED
((BBTOCC . 2) (BBTOCC .1) (BBTOCC .1))

(G0019 G0014 GOOOS))
(G0031 SO

(-AAB- -BCCDDW)
ACTIVE
T
SUSPENDED
((BBTOCC . 1) (BBTOCC .1) (BBTOCC .1))

(G0019 G0014 G0005))
(G0032 SO

("AAB" "BCCDD-)
ACTIVE
T
SUSPENDED
((CCTODD . 1) (BBTOCC .1) (BBTOCC .1))

(G0019 G0014 GOOO5))
(G0033 SO

(-AACC' "CCDD")
ACTIVE
T
SUSPENDED
((BBTOCC . 2) (CCTODD .1) (BBTOCC .1))

(G0020 G0014 G0005))
(G0034 SO

("AAB" "BCCDD")
ACTIVE
T
SUS PENDED
((BBTOCC . 1) (CCTODD .1) (BBTOCC .1))

(G0020 G0014 G0005))
(G0035 SO

("AAB" -BCCDD-)
ACTIVE
T
SUSPENDED
((CCTODD . 1) (CCTODD .1) (BBTOCC .1))

(G0020 G0014 G0005))
(G0036 SO

("AACC" "CCDD")
-89-

ACTIVE
T
ACTIVE
((BBTOCC . 2) (BBTOCC. 1) (CCTODD. 1))
(G0021 G0015 G0005))

(G0037 SO
("AABm "BCCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (BBTOCC 1) (CCTODD. 1))
(G0021 G0015 G0005))

(G0038 SO
("AAB" "BCCDD")
ACTIVE
T
ACTIVE
((CCTODD . 1) (BBTOCC . 1) (CCTODD . 1))
(G0021 G0015 G0005))

(G0039 SO
("AACC" "CCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 2) (CCTODD . 1) (CCTODD . 1))
(G0022 G0015 G0005))

(G0040 SO
("AAB" "BCCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (CCTODD. 1) (CCTODD. 1))
(G0022 G0015 G0005))

(G0041 SO
("AAB" "BCCDD")
ACTIVE
T
ACTIVE
((CCTODD . 1) (CCTODD. 1) (CCTODD. 1))
(G0022 G0015 G0005)))

NIL
INTERRUPT MODE!
WHAT NOW:*EV
EV WHAT?
*(MAYIFYWORLDLINES 'G0014 '(BEGINS "BC" *2) 'DESUSPEND! T)
((G0023 SO

("BBCCC" "CDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (BBTOCC . 2) (AATOBB. 2))
(G0016 G0013 G0005))

(G0024 SO
("BBCCDD" "DD")
ACTIVE

- 90 -

T
ACTIVE
((CCTODD .2) (BBTOCC .2) (AATOBB .2))

(G0016 G0013 G00051)
(G0025 SO

("BBCCC- -CDD")
ACTIVE
T
ACTIVE
((CCTODD . 1) (BBTOCC .2) (AATOBB .2))

(G0016 G0013 G0005))

(G0026 SO
(-BBBB- "CCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (BBTOCC .1) (AATOBB .2))

(G0017 G0013 G0005))
(G0027 SO CD)

ACTIVE
T
ACTIVE
((CCTODD . 1) (BBTOCC .1) (AATOBB .2))

(G0017 G0013 G0005))

(G0028 SO
("BBBB-" CCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (CCTODD .1) (AATOBB .2))

(G0018 G0013 G0005))

(G0029 SO
("BBBB- "CCDD")
ACTIVE
T

A(CTVE 1) (CCTODD 1) (AATOBB 2))

(G0018 G0013 G0005))
(G0030 SO

(-AACC" "CCDD")
ACTIVE
T
SUSPENDED
((BBTOCC . 2) (BBTOCC .1) (BBTOCC .1))

(G0019 G0014 G0005))
(GO031 S0

("AAB- "BCCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (BBTOCC .1) (BBTOCC .1))

(G0019 G0014 GOOO5)X,

(GO032 SO
(-AAB" -BCCDD")

-91

ACTIVE
T
ACTIVE
((CCTODD . 1) (BBTOCC .1) (BBTOCC.1)
(G0019 G0014 G0005))

(G0033 SO
("AACC" -CCDD')
ACTIVE
T I.

SUSPENDED
((BBTOCC . 2) (CCTODD 1) (BBTOCC.1)
(G0020 G0014 G0005))

(G0034 SO
("AAB" "BCCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (CCTODD .1) (BBTQCC.1)
(G0020 G0014 G0005))

(G0035 SO
(-AAB" "BCCDD-)
ACTIVE
T
ACTIVE
((CCTQDD . 1) (CCTODD .1) (BBTOCC.1)
(G0020 G0014 GOO05))

(G0036 SO
(-AACC- "CCDD-)
ACTIVE
T
ACTIVE
((BBTOCC . 2) (BBTOCC .1) (CCTODD 1)
(G0021 G0015 G0005))

(G0037 SO
(-AAB- "BCCDD-)
ACTIVE
T
ACTIVE
((BBTOCC . 1) (BBTOCC .1) (CCTODD 1)
(G0021 G0015 G0005))

(G0038 SO
("AAB" -BCCDD")
ACTIVE
T
ACTIVE
U(CCTODD . 1) (BBTOCC .1) (CCTQDD.1)
(G0021 G0015 G0005))

(G0039 SO
(-AACC" -CCDD")
ACTIVE
T
ACTIVE
((BBTQCC . 2) (CCTODD . 1) (CCTODD 1)
(G0022 G0015 GOOO5))

(G0040 SO
-92 -

("AAB" "BCCDD")
ACTIVE
T
ACTIVE
((BBTOCC . 1) (CCTODD. 1) (CCTODD. 1))
(G0022 G0015 G0005))

(G0041 SO
("AAB" "BCCDD")
ACTIVE
T
ACTIVE
((CCTODD . 1) (CCTODD . 1) (CCTODD . 1))

NIL (G0022 G0015 G0005)))

INTERRUPT MODE!
WHAT NOW:*EV
EV WHAT?
* (EXIT)

(DEFPROP LEFT
(LAMBDA (X)

(COND r(NOT (STRINGP X))
(ERROR "NON-STRING ARGUMENT TO LEFT")]

[(EMPTYP X) (ERROR "EMPTY STRING TO LEFT-)]

((SUBSTRING X 1 1)1))
E XPR)
(DEFPROP REST
(LAMBDA (X)

(COND C (NOT (STRINGP X))
(ERROR "NON-STRING ARGUMENT TO REST")]

((EMPTYP X) (ERROR "EMPTY STRING TO REST")]
((EQ (STRLEN X) 1) ""1
((SUBSTRING X 2 (STRLEN X))]))

EXPR)
(DEFPROP EMPTYP
(LAMBDA (X)
(COND ((NOT (STRINGP X))

(ERROR "NON-STRING ARGUMENT TO EMPTYP")1
[(EQSTR X "")]))

EXPR)
(DEFPROP BEGINS
(LAMBDA (A B)
(COND [(NOT (AND [STRINGP A] (STRINGP B]))

(ERROR "NON-STRING ARGUMENT TO BEGINS")]
((EMPTYP A)]
[(NOT (*GREAT (STRLEN A) (STRLEN B)))
(EQSTR A (SUBSTRING B 1 (STRLEN A)))]))

EXPR)
(DEFPROP STRLEN (LAMBDA (X) (LENGTH (EXPLODEC X))) EXPR)

J. Plans for the Future

The expansion of this primitive computer system will proceed
with a definite plan. In the first stage, comprehensive error-
catching facilities will be included. At present, an error dur-
ing the EVALuation of any LISP expression returns control through

- 93 -

the error package to the top level of LISP. Error checks should
keep control in such cases, and should prevent the user from en-
tering nonsense structures to KOTSU.

In the second stage it is planned to include a logic pro-
gramming capability to function in the test part of a quadruple.
The whole system will then become an instrument for investigating
possible control structures to accompany these new and powerful
devices of logic programming.

In the third and extremely important stage, the system will
be made much more responsive to the user's needs. Debugging and
tracing aids will be refined, and a smooth and convenient means
to communicate with the system will be devised. In the fourth
stage existing capabilities of the system will be expanded and
refined so that the semantics of KOTSU will be enriched and en-
larged, if not deepened.

In the fifth stage we will study appropriate syntactic forms
for expressing the kinds of control operations that are a major
part of KOTSU. We will be designing specific programming lan-
guage constructs for controlling and testing the interaction a-
mong concurrent world lines.

In the sixth stage we will begin reprogramming of basic
parts of the system

taking into account the pointer manipulation facilities
available in LISP. Along with these developments we will be or-
ganizing a precise definition for the whole system including both
the structures and the processes involved.

A major emphasis inthe immediate future will be on develop-
ing and recognizing applications of these facilities to inter-
esting computational problems. It has not been possible to in-
clude a carefully developed application here, but we can indicate
in general and suggestive terms how we can approach a problem in
computational linguistics. This brief discussion will focus on
the attitude rather than on the technology.

Historically, language has been studied as though it con-
sisted of a system of objects organized in certain ways and pro-
cessed by a general purpose computer. This description is even
thue of pre-Chomskyan linguistics. Processes were indeed in-
volved, but were subordinate to the categories and grammatical
relations fostered in what is sometimes called "school grammar".
The excessiveconcern with automata theory has seems to inflict
linguistics and certainly computational linguistics arises from
an unquestioning trust in these systems of categories and gram-
matical relations.

Here we are invited to take a fundamentally different ap-
proach to the study of language. And thus also a fundamentally
different view of computer implementations of language processes.
The facilities described here constitute a systematic and dis-

- 94 -

ciplined framework with which complex interacting processes can
be specified and investigated in an experimental setting. It is
clearly not a question of being able to specify processes that
can't be specified in other means. Rather, we have a completely
different way of specifying algorithms, and an invitation to
consider algorithms from a novel point of view.

For example, we can consider that the recognition of utte-
rances is not so much a matter of assigning parts of a sequence
to grammatical categories and relations, but rather is a matter
of bringing a set of concurrent processes into some kind of sta-
ble cooperating configuration. Such notions as resonance and
entrainment seem apt metaphors. We may understand that the de-
finiteness of a linguistic structure is determined not by the
categories and relations that its constituents enter into, but by
the nature and degree of cooperation among those constituents.
If we cultivate a healthy disrespect for all those background
concepts and abstractions we may discover in the foreground that
it is the processes of language that should be described by lin-
guistic theories, and it those same processes that may be dupli-
cated with a computer in a way that will preserve the power of
natural language, and not simply confront us with a barrage of
sterile combinatorial nattering.

For a specific case, we may suggest that language recogni-
tion consists in the parallel operation of a whole system of
individual recognizers. One identifies mood, another identifies
cases, such as actor, agent, instrument, etc. Another recognizer
identifies degree of definiteness and quantification. Another
searches for "root" or "radical" elements in the utterance. An-
other determines temporal or "tense" factors. A spectrum of
other processes may be involved with such emotional issues as
fearing, loathing, desiring, and with propositional attitudes
such as hoping, believing, wishing, and so on. In a basic sense
the form of cooperation among a family of such preferential
judgments is as specified in this report. The substance of it is
further specified by the LISP processes and the logical inferen-
ces that occur as acts and tests in the quadruples. We will be
investigating these matters thoroughly in the immediate future.

- 95 -

Append ix

Here we discuss the role of the technical notion of an occurrence
in the computer processing of language text. We indicate that
the formal aspect of language processing is devoid of meaning.
We try to sketch the beginning of a formal theory of occurrences,
show how these ideas may be incorporated into a running computer
system, and illustrate the first stages of such a system in ap-
plication to some English text for defining functions in LISP and
to English text taken from the manual Lor courts martial. A few
of the existing functions used in the computer system are de-
scribed in order to show what kind of programming is involved.

A. Introduction

Natural languages and the languages of computation and logic
have two important characteristics in common. They each deal
with expressions of some sort, and each provides a systematic way
of interpreting its expressions. At the present time, we have no
clear indication of the nature of interpretation in natural lan-
guage. Interpretation in logic is reasonably well-defined, al-
though we never have the last word on any subject. For the case
of computation there are interpretive issues that are clear and
some that are not so clear. We may interpret a computational
transaction as consisting of the manipulation of arrangements of
natural numbers, in which case the numbers are introduced purely
as a matter of interpretation. Or we may understand that a com-
putation is a sequence of functional applications, this sequence
required to meet certain formal conditions. In this case, func-
tions and functional application constitute the most basic in-
terpretation. We may interpret a computation as a sequence of
physical events of a specified kind, again required to meet cer-
tain formal conditions. There are other interpretations of com-
putation, but each of them makes use of an operation of
substitution. Expressions or things get replaced by other ex-
pressions or things in a systematic way. Substitution seems to
appear in all formal treatments of natural language, computation
and logic. But aside from substitution there appears to be no
other unifying conception in the theory of computation.

There is, however, another level of order that is prior to
the level in which a substitution operation is specifiable. It
is prior in the sense that substitution cannot be well-defined
without reference to the objects and relations that appear in
this more elemental level of structure. At this level we speak
of occurrences and of complex arrangements of occurrences. We
specity what can be done to occurrences, and what can be done
with them. Once the re- ularity in this level of structure has
been described, we can then introduce the substitution operation,
in which an occurrence of one thing is substituted for an occur-
rence of a second in an occurrence of a third. Thereseems to be
no wa-to formula--e the notion of substitution without reference
to occurrences and their properties. We may, as has been done in

- 96 -

the past, choose to iqnore the structure of pure occurrences on
the ground that the notion is far too primitive to yield any
concrete benefit. But it is difficult to see how we can know
that there will be no benefit unless we look for one.

The studies reported here have concentrated on occurrences,
arrangements of occurrences and their manipulation by computer.
The computer system which is described and illustrated in later
sections deals with occurrences of natural language objects. One
very important question in the study of natural language concerns
the distinction between the form or structure of linguistic ob-
iects and the meaning of these objects. The question is deci-
sively obscured by the fact that we have no clear idea of what
these meanings are, how they are arranged, or how they are sys-
tematicallv related to expressions, situations and people. In
addition, the conventional view of linguistic form is not com-
pletely neutral with regard to the question of meaning. For ex-
ample, well-known grammatical categories such as noun phrases or
relative clauses provide a complex system of structures for later
association with meanings. The fact is, however, that the con-
cept of a noun phrase is a concept in part about meanings, and
not about form only. Noun phrases have a nominal function, hence
a referential function and hence an interpretive character.
Since these categories and others like them are not independent
of meaning, they are unsuited for the representation of pure un-
interpreted form in any language. Moreover, the determination of
specific categories is understood, at least in linguistic stu-
dies, to be a matter of empirical observation, so that even the
concept of categories is dependent upon an expected interpreta-
tion. Linguistic data fully justify this expectation, I think,
but the description of the uninterpreted form of language may
still not make use of these categories.

An adequate representation of form is provided by the study
of occurrences. In these pages I will examine this idea infor-
mally, and indicate, toward the end, what one might do to demon-
strate adequacy in a convincing way.

In the next section we very briefly review some of the ideas
that have appeared in computational linguistics, and we observe
that the present study does not make important use of those i-
deas. Existing studies in computational linguistics may be in-
teresting in themselves, and may on occasion have practical ap-
plication. But there is no objective evidence that these studies
have anything to do with natural language, except that similar
(but not identical) alphabets of symbols are involved at selected
levels of organization. The studies reported here are moving in
a different direction. I believe that it may be valuable to
discover how naturally occurring living things implement their
languages. Concrete benefits may follow from such discovery, and
I will later suggest at least one such benefit, however modest.

In subsequent sections there will be a first approximation
to a theory of occurrences, an indication of the difference be-
tween occurrences and occurrences of things, and an attempt to

- 97 -

W-: --

show how the characteristics of occurrence structure are mani-
fested in natural language. Then we describe a computer system
for dealing with occurrences, illustrate its application to nat-
ural language, and suggest possible implications for the devel-
opment of a truly universal programming language.

B. Computer Linguistics

Computer processing of natural language text originally fo-
cussed on the representation of the text provided in terms of
such conventional categories as nouns, verbs, noun phrases, pre-
positional phrases, relative clauses, and others. Exactness was
achieved by formalizing this treatment in terms of phrase-struc-
ture grammars as originally defined by Chomsky. The whole class
of phrase-structure grammars was separated by Chomsky into four
subclasses, each of which was shown to be related to a certain
kind of mechanical recognition device. For a period of time it
was believed that adequate implementation of these recognition
devices might provide computer systems with the ability to exhi-
bit interesting and useful linguistic capacities. The judgment
that the recognition devices which Chomsky associated with his
grammars in some important way reflected the realities of human
language. was never, however, supported by objective evidence or
argument. There is hardware associated with human language - the
brain, the oral cavity and supporting muscles, and the pulmonary
system - but one cannot really say that language makes use of a
pushdown store until one has found that pushdown store in the
hardware.

A second major effort in natural language by computer was
initiated by a series of studies many of which were done at
M.I.T. during the nineteen sixties. This work flowered in Wi-
nograd's famous study which exploited computer handling of natu-
ral language in a well-defined and manageable setting. Among
other things, this study may be interpreted as providing evidence
that the human language capacity is organized so much like a
program-controlled computation that the subroutine concept itself
is 4 central organizing principle in human language. Moreover,
Winograd's system was organized in such a way that the process of
constructing underlying meanings was intimately bound up with the
more superficial stages of syntactic parsing. Such substructures
as words, phrases and clauses were indeed constructed and as-
signed meanings, but the involvement of semantic analysis in the
whole process was thought to show that an independent parsing
mechanism could not be factored out of language. But since lan-
guage processes are factored according to the subroutine concept,
and since language and thought are inseparable, thought processes
must also be factored according to the subroutine concept. In
short, the human mind must be a computer.

This is a fine argument, and I think it is largely correct,
but I would suggest one emendation. Meanings can be eliminated
altogether, and the argument still stands. That is, the form of
mental activity is comput itional in character. But it T-s--nap-
propriate to sugq," ' tha" .,il aspects of mental activity are

- 98 -

computational. Science has nothing whatever to offer with re-
spect to mind or to meanings, and for that reason alone it is
inappropriate, in a scientific setting, to determine that mean-
ings have a certain form, whether that is the form of a program,
a data base, a deduction or any other kind of computational
structure. There is, at the moment, no way to base conclusions
within a theory of mind on experimental observation, because we
simply do not know what to observe. And it is confusing to sug-
gest that the meaning of an expression is determined by how it is
"used". In the first place this proposal suggests that material
purposeful "use" exhausts or essentially determines the signifi-
cance of linguistic expressions. And in the second place it
makes the unjustified assumption that the phrase "how it is used"
is itself precise and definite in significance, whereas this
phrase may be little more than a slogan, whose principal effect
is to inhibit the asking and answering of interesting and impor-
tant questions about human language.

If we regard computational linguistics as a purely techno-
logical and artifactual activity, then of course it makes no
difference what relation it has to the study of human language.
On the other hand, biological systems have shown considerable
success at doing what they do, and at changing their form to meet
changing requirements. It may be appropriate to study human
language in a non-technological framework, one which makes no
unwarranted presuppositions about "practical" utility, or about
how "meanings" are represented. It may be appropriate to study
human language with reference to structures that are completely
neutral with respect to interpretation.

The present studies and the computer implementation that has
grown out of them do not fit with the tradition or with the cur-
rent paradigm in computational linguistics, and it may therefore
be helpful to list the attitudes that underly this work.

We reject the idea that syntactic and semantic analysis must
proceed in tandem. There is an extensive body of literature in
the brain sciences which shows that in fact these functions are
indeed factored by the hardware. Brain disorders of one kind
leave the grammatical function fairly intact, while those of an-
other kind severely impair grammatical function without seriously
affecting any observable intellectual prccess. (There is some
reason to believe, on the basis of these studies, that language
is not nearly so implicated with intelligence as has been sup-
posed in the past, although it is surely implicated with mind.)

We reject the idea that a context-free phrase-structure
grammar is the appropriate formal vehicle for the description of
linguistic structure. A far simpler mechanism may be involved,
one which simply inserts the parentheses into a sequence of ato-
mic objects. That is, this mechanism determines which sequences
of linguistic units are subsequences of which others, but does
not characterize them in terms of grammatical categories. As a
consequence, rewrite rules disappear, along with pushdown stores
and all the other tedious paraphernalia of automata theory.

- 99 -

But we note that parentheses may still have interpretive
significance. The concept of functional application is indicated
in LISP by a pair of parentheses. Computation can be defined
without the notion of functional application, so that this notion
is interpretive, and so therefore is the use of parentheses to
indicate it. In LISP functional application is what is being
talked about. If there is such a thing, "pure" LISP is meaning-
ful. Bound variables are also meaningful because they contrast
with free variables, and free variables are meaningful because
they are proper names. The concepts "free" and "bound" are thus
interpretive. Being bound or free is an attribute of what occurs
and not of occurrence itself. We may then ask to what extent can
computations be organized without reference to variables or to
objects which are like variables. To the extent that computation
can be so organized we will have a computational mechanism with-
out variables, and hence without identifiers. Turing machines
have this property, but it may be of interest to see exactly what
can be accomplished without sacrificing it.

We reject the idea that the structure of language depends
upon what is being talked about. In order to see how far we can
go, we omit any treatment of knowledge representation. This
study is thus exclusively concerned with the processing by com-
puter of structures that are intended to be like the structures
that arise in normal human language, structures characterized in
terms of occurrences only.

We adopt the idea that it is important to identify the most
general and most fundamental level of structure at which language
operates. If there really is a mind, and if that mind is essen-
tially involved with language, and if the brain is implicated as
well, then we must look for and find structures in mind, language
and brain which can be related in a natural and systematic way.
We do not know very much about these structures and these rela-
tionships, but we do know this: there is one kind of structure
common to all three - the structure of occurrences.

We adopt the idea that significant language processing can
be achieved without specifying any particular topic. The evi-
dence is quite clear that there are many different ways of de-
fining linguistic acceptability, and we can even find a level at
which nonsense text and uninterpretable text are accepted, where
the accepted text still meets stringent regularity conditions.
As an example of the former we have "With mergies we sponder a
niddling long before the gleeber pluded.", and for the latter we
have "Of the apple by which a dog who lost her essay.".

We adopt the idea that it is important to consider non-
technical approaches to those problems facing the Department of
Defense. This department is, after all, charged with the awesome
responsibility to preserve the physical integrity of the United
States, its institutions and its people. In a mere three billion
years, natural biological mechanisms have managed to produce the
living systems we know, starting with nothing but inorganic
structures, and relying on a surprising number of natural defense

- 100 -

mechanisms. In fact, defense and adaptation are obviously quite
closely related. Perhaps we can find some reasonably powerful
structures and organizing principles among successful biological
mechanisms that will contribute positively to the conduct of mo-
dern institutional defense. In this study we try to take the
first steps toward implementing a computer system for language
that is based on what occurs naturally, in the hope that it can
evolve into something responsive ti human beings. Staff officers
are human beings, and additionally are often involved with com-
plex command and control systems with a strong technological
orientation. It may be helpful for them to have a language sys-
tem that is as sensitive to them as it is to the technology. If
these technological systems cannot accommodate the living things
they affect at least to the same extent that these living systems
accommodate each other, then it may be valuable to document this
inadequacy and provide compensating adjustments where possible.

Finally, we find that a clear separation of form from in-
terpretation helps to distinguish the purely formal aspect of
language from the purely interpretive aspect. It also provides a
well-defined framework within which we can ask if some aspect of
language depends essentially upon both. For example, we have
seen that functional application is found in language as a result
of providing a systematic interpretation. The attribution of a
property to an object is reflected in the form of language as
well as in its interpretation. In the phrase "The girl who has
blue eyes" a complete predication is contained in a modifying
feature. The modifying feature is "who has blue eyes" and the
predication is "girl has blue eyes". Cases like this one (and
they are plentiful) are interesting because the phrase "who has
blue eyes" is thought to be structurally subordinate to "the
girl". We do not yet understand how subordination, which is
purely formal, and attribution, which is interpretive, are sys-
tematically related. The interplay of form and interpretation is
ill understood in this case as well as in many others like it.
And this issue is surely of the first importance in studying the
possibility of using a computer for natural language.

C. Theory of Occurrences

When I speak of occurrences I have in mind the kind of thing
referred to when we write that an occurrence of a variable "y" in
"A" is free or bound in "(FA)" according as it is free or bound
in "A". The definitions of free and bound refer to occurrences
of variables and not simply to variables. In a Turing machine
formulation of computability theory, there are occurrences of
marks on tape squares, and indeed, there are occurrences of the
events of marking, erasing, and shifting left or right. The fact
that we can speak of occurrences of objects and of events sug-
gests that there may be something interesting to say about oc-
currences in abstraction from what they are occurrences of. It
will be important to bear in mind, throughout this repot-t, that
we speak of occurrences only, and we mean specifically to exclude
any characteristics they might have that derive from what they
are occurrences of.

- 101 -

The theoretical machinery will deal with individual occur-
rences and with finite sets of occurrences, where these finite
sets will have defined on their members relations which are
characteristic of occurrences. The fundamental relation on a
finite set of occurrences we call an immediate dominance rela-
tion, ID, if it is irreflexive, not necessarily symmetric and not
necessarily transitive. No occurrence can ever immediately do-
minate itself, but pairs of occurrences may but need not immedi-
ately dominate each other. And it may or may not be the case
that x ID z when x ID y and y ID z. Intuitively, the ID relation
ought to formalize the immediate constituency relation for ex-
pressions in a language. It ought to formalize the relation be-
tween a composite process and its immediate subprocesses and it
ought to formalize the relation holding between things that are
serially ordered. The notion of immediate dominance is deci-
sively directional. If x ID y then we say that x immediately
dominates y, and that y is immediately dominated by, or is sub-
ordinate to, x. In general, ID is simply an irreflexive rela-
tion.

There is also considerable importance to a certain transi-
tive relation derived from ID. The transitive closure, trans(R),
of R, is defined so that it includes R, contains the pair---x, z)
whenever it contains both (x, y) and (y, z), and contains nothing
else. If S is a (finite) set of occurrences with an ID relation,
and R is trans(ID), if there is some x' in S such that for all y
in S different from x', x' R y, then x' is a principal occurrence
of the set S, and an arrangement is a triple consisting of the
set S, the relation R, and a specified principal occurrence in S.
The relation R is called the dominance relation, and if x R y we
say that x dominates y and that y is dominated by or is
subordinate to x. In an arrangement, occurrences may or may not
dominate themselves, including the principal occurrence.

An aggregate of occurrences is a superficial kind of struc-
ture. But the dominance relation has an integrating effect,
since it permits the distinction between those sets of occur-
rences that have principal occurrences from those that do not.
It allows us to distinguish arrangements from mere piles. We
note further that the dominance relation is introduced at the
cost of using the notion of a transitive closure, a notion that
is recursive in character. In short, the role played by recur-
sive definitions in the notion of well-formation is enacted at
the level of occurrences, before any specification is made about
what the expressions mean, and indeed even before any specifica-
tion is made about what is to occur. Arrangements of events also
have this character.

The dominance relation is not irreflexive, since if x ID y
and y ID x, then x R y and y R x and then x R x. But the domi-
nance relation need not be symmetric and certainly need not be
weakly anti-symmetric. It is simply a certain kind of transitive
relation. And a set of occurrences whose dominance relation
determines a principal occurrence is an arrangement.

- 102 -

An arrangement (S, R, p) may have a subarrangement (S*, R*,
a*) where S* is included in S, R* is included in R and (S*, R*,
a*) is itself an arrangement. By convention, certain subar-
rangements of an arrangement, or of a class of arrangements, will
be called features. A feature of an arrangement S is a subar-
rangement S* of S none o whose members dominate any occurrences
outside S* and such that if any occurrence outside S* dominates
any occurrence in S*, it also dominates the principal occurrence
in S*. In short, a feature is a subarrangement whose only con-
nection with the rest of the arrangement is mediated through its
principal occurrence. The dominance relations outside and inside
S* are connected solely at the principal occurrence of S*.

In discussing and exemplifying arrangements we will often
use simple identifiers in place of features. These identifiers
are not really part of the structure of occurrences, but are used
only to make their presentation more compact and perhaps more
palatable. They also encourage recognition of the same arranqe-
ment of occurrences in different settings. In this connection we
note that by the most basic property of occurrences, no two ar-
rangements can be completely identical because the occurrences
they are made of are all distinct. But their relations may be
"isomorphic" in a well-defined sense which we will not pause to
elaborate here. (And obviously, we can also define the notion
that there is a homomorphism from one arrangement to another, in
an obvious way.) The identity relation among arrangements will
play an important part in future developments in these studies.

We may hazard an informal comment that the study of the
non-trivial aspects of occurrences and of arrangements is the
study of pure uninterpreted form. We expect to show that compu-
tability theory will be expressible with reference only to the
manipulation of arrangements. We may also speculate that the
significance of arrangements of occurrences in the brain may be
determined by the different modalities which characterize the
things that occur in an arrangement. Patterns of modalities of
regular and re-occurring forms may also be identifiable in a
framework making reference to arrangements and further elabora-
tions of these ideas.

If we try to devise expressions to stand only for occurrence
structure then no two occurrences bear the same name or the same
"position" in the expression, reflecting the fact that no two
occurrences are the same. Occurrences are decisively and u-
niquely distinguished from their environment. Whatever the na-
ture of the space they are in, occurrences are decisively diffe-
rentiated out of that space, and it is this sharp differentiation
that we refer to when we say that an object is discrete. Of
course, a set of occurrences may have an ID relation it but
that relation may happen to be empty. We may represent the
transitive closure of -the immediate dominance relation in some
suitable notation. Then a may immediately dominate f, f may im-
mediately dominate b and g and g may immediately dominate e.
Then the transitive closure of this relation will be

- 103-

a(f, b, g, e)
f(g, e)
g (e)

where x(yl, ... , yM) means that x dominates yi, for i in the ap-
propriate range.

By inspection we can see that a set of occurrences may) lack
a principal occurrence and so is not an arrangement. A subar-
rangement describe the top-down structure of a whole arrangement,
where the term "top-down" is to be taken with reference to the
(directed) dominance relation. Subarrangements may be understood
as features, and we see that features may contain other features
as parts. We agree to restrict this "part" relation to subar-
rangements, and note that an occurrence standing alone is an ar-
rangement.

Occurrences of things have different properties than do oc-
currences. For example, if we want to combine two arrangements
to make a new single arrangement, we may take a set union and
then add what is needed to the dominance relation. We can

substitute one feature for another in an arrangement simply by
deleting one subarrangement and adding another.

In many formal languages, expressions are built on an oc-
currence structure in which all subarrangements are features, so
that a substitution operation is readily specifiable in simple
terms. In other formalisms substitution is not so simple a mat-
ter. In the lambda calculus, for example, substitution of oc-
currences is allowed or prohibited only with reference to condi-
tions that are determined by what occurs. If we chose to set
conditions on substitution in arrangements, we might ignore the
properties of the things that occur. We might require, for ex-
ample, that if every subarrangement is a feature before the sub-
stitution, then the same must hold true after the substitution.
More generally we might require that arbitrarily specified
properties of a set of arrangements ordered by the part relation
must be invariant under transformations. Such is the nature of
the restrictions on substitution in the lambda calculus. It may

be the case that interesting variations on substitution may turn
up es we elaborate further the theory of occurrences.

D. Examples of Computer Processing

The iexamples we can present at this time demonstrate that
it is possible to accomplish a considerable amount of purely
formal or syntactic analysis provided we forego the use of gram-

matical categories, noting that they are hardly necessary in any
event. We will begin by displaying the analysis, as it is re-
presented in the system, of one sequence of English text that
describes a string manipulation function to a recursive language

like LISP.

>Let x be the only argument to the function f. The value of f,

when x is zero, is one. Otherwise the value of f is the pro-

duct of x with (f(subl x)).
- 104 -

(G0323
CONS EC
((G0325 FEATURES (#DOT .T))

(G0327
SERIAL
((G0241
CONS EC
((G0221 FEATURES (Let . T))
(G0223 FEATURES (x .T))

(G0225 FEATURES (be T))
(G0227 FEATURES (the .T))

(G0229 FEATURES (only .T))

(G0231 FEATURES (#FRAME . T) (argument .T))

(G0329
CONS EC
((G0235 FEATURES (the . T))

(G0237 FEATURES (function T))
(G0239 FEATURES (f .T))

FEATURES
(#PREP .T)
(to .T))))

(G0317
CONS EC
((G0319 FEATURES (#DOT . T))
(G0321
SERIAL
((G 0269
CONS EC
((G0243 FEATURES (The . T))
(G0245 FEATURES (#FRAME .T) (value T))
(G0331 CONSEC

((G0249 FEATURES (f .T))
FEATURES
(#PREP .T)
(of.T))

(G0271 FEATURES (#COM . T))
(G0265
CONSEC
((G0251 FEATURES (when .T))
(G0253 FEATURES (x .T))

(G0255 FEATURES (is .T))

(G0257 FEATURES (zero.T))
(G0267 FEATURES (#COM . T))
(G0263
CONS EC
((G0259 FEATURES (is .T)) (G0261 FEATURES (one

(G031 1
CONS EC
((G0313 FEATURES (#DOT . T))
(G031 5
SERIAL
((G0307 CONSEC ((G0273 FEATURES (Otherwise T))

(G0309 FEATURES (#COLN .T))

(G0305
-105-

CONSEC
((G0275 FEATURES (the . T))
(G0277 FEATURES (#FRAME . T) (value . T))
(G0333
CONSEC
((G0281 FEATURES (f . T))

(G0283 FEATURES (is . T))
(G0285 FEATURES (the . T))
(G0287 FEATURES (product . T))
(G0335
CONSEC
((G0291 FEATURES (x . T))

(G0337
CONSEC
((G0303
CONSEC
((G0295 FEATURES (f . T))
(G0301
CONSEC
((G0297 FEATURES (subl . T))
(G0299 FEATURES (x . T)))))))

FEATURES
(#PREP. T)
(with . T)))

FEATURES
(#PREP . T)
(of . T)))

FEATURES
(#PREP . T)
(of . T)))))))))

This display shows the result of "parsing" the original sequence,
including the treatment of prepositions. Symbols such as the
colon, semicolon, comma, and certain others, are parsed as the
outermost, or global, symbols indicating grouping. All groupings
run from the occurrence of the symbol to the next grouping indi-
cator to the right, and the hierarchical subordination is estab-
lished as the input sequence is scanned from left to right.
After this parse is completed, the system parses again for pre-
positions,

I will use the word "incorporation" to refer to what is
constructed in the computer system in place of the word "repre-
sentation" since the latter word may suggest that the analysis
presupposes what is represented. A complete list of what is
incorporated in the present system would include: occurrence
identifiers, grouping indicated by periods, commas and other
punctuation marks, grouping indicated by pauses, hesitations,
etc., grouping indicated by prepositions, different kinds of or-
dering indicated by SERIAL, CONSEC and UNORDERED, the feature
convention, and finally the identification of frame elements.
All the linguistic material that is subject to direct interpre-
tation is incorporated as features. Each feature is incorporated
as a dotted pair whose cdr is T. In the future, the cdr of a
feature may be an expression suitable for evaluation or a func-

- 106 -

tion suitable for application. These items will affect the sig-
nificance of the arrangements they are a part of. The special
pause characters that indicate bracketing are of some importance.
These are inserted by the user into the input sequence in natural
places, much as a patient teacher pauses frequently as he tries
to articulate a complex idea. These pauses are treated exactly
as punctuation marks by the scanner. The only one shown in the
examples displayed here is the colon, ":", which is therefore not
being used here as a colon. In command and control applications
we visualize separate pause and bracketing keys on the system
communication devices. We expect to devote some attention to
these pause indicators in future work, and the additional group-
ing developed thus is indicated. The next display excludes the
generated occurrence symbols which are explicitly stored in the
computer. The next display eliminates the ordering indicators,
SERIAL, CONSEC and UNORDERED.

(CONSEC
((FEATURES (#DOT . T))
(SERIAL
((CONSEC

((FEATURES (Let . T))
(FEATURES (x . T))
(FEATURES (be. T))
(FEATURES (the . T))
(FEATURES (only . T))
(FEATURES (#FRAME . T) (argument . T))
(CONSEC

((FEATURES (the . T))
(FEATURES (function . T))
(FEATURES (f . T)))

FEATURES
(*PREP . T)
(to . Tf))))

(CONSEC
((FEATURES (#DOT . T))
(SERIAL
((CONSEC

((FEATURES (The . T))
(FEATURES (#FRAME . T) (value T))
(CONSEC ((FEATURES (f . T))) FEATURES (#PREP. T)

(of . T))))
(FEATURES (4COM . T))
(CONSEC
((FEATURES (when . T))
(FEATURES (x . T))

(FEATURES (is . T))
(FEATURES (zero . T))))

(FEATURES (#COM . T))
(CONSEC ((FEATURES (is . T)) (FEATURES (one

(CONSEC
((FEATURES (#DOT . T))
(SERIAL
(,CONSEC ((FEATURES (Otherwise . T))))

- 107 -

(FEATURES (#COLN . T))
(CONSEC
((FEATURES (the . T))
(FEATURES (#FRAME . T) (value . T))
(CONSEC

((FEATURES (f . T))
(FEATURES (is . T))
(FEATURES (the . T))
(FEATURES (product . T))
(CONSEC
((FEATURES (x . T))

(CONSEC
((CONSEC

((FEATURES (f . T))
(CONSEC ((FEATURES (subl . T)) (FEATURES

(x .

FEATURES

(#PREP. T)
(with . T)))

FEATURES
(#PREP . T)
(of . T)))

FEATURES
(#PREP . T)
(of . T))))))))

((((FEATURES (#DOT . T))
(((((FEATURES (Let . T))

(FEATURES (x . T))
(FEATURES (be . T))
(FEATURES (the . T))
(FEATURES (only . T))
(FEATURES (#FRAME . T) (argument . T))
(((FEATURES (the . T))

(FEATURES (function . T))
(FEATURES (f . T)))

FEATURES
(#PREP . T)
(to . T))))))))

(((FEATURES (#DOT . T))
(((((FEATURES (The . T))

(FEATURES (#FRAME . T) (value . T))
(((FEATURES (f . T))) FEATURES (#PREP . T) (of

T))))
(FEATURES (#COM . T))
(((FEATURES (when . T))

(FEATURES (x . T))
(FEATURES (is . T))
(FEATURES (zero .T))))

(FEATURES (#COM . T))
(((FEATURES (is . T)) (FEATURES (one .T))))))))

(((FEATURES (#DOT . T))
(((((FEATURES (Otherwise . T))))

(FEATURES (#COLN . T))
(((FEATURES (the . T))

(FEATURES (#FRAME . T) (value . T))
- 108-

(((FEATURES (f . T))
(FEATURES (is . T))
(FEATURES (the . T))
(FEATURES (product . T))
(((FEATURES (x . T))

(((((FEATURES (f . T))
(((FEATURES (subl . T)) (FEATURES (x

FEATURES
(#PREP. T)

(with . T)))
FEATURES
(#PREP . T)
(of . T)))

FEATURES
(#PREP . T)
(of .

We notice here that a consecu%' sequence of words that consti-
tutes a prepositional pl,,rase in conventional notation has two
features to indicate that fact. Ore feature, #PREP, indicates
that it is is prepositional phrase, and the other feature indi-
cates directly which pr ep-ition is present. This uniform
treatment is adopted because we want to avoid any structure in
the incorporation that suggests any particular interpretation.
The following incorporation shows only the features themselves.
This facility will become more valuable as the system is devel-
oped and features become more complex.

(((((#DOT . T))
((((((Let . T))

((x . T))
((be . T))
((the . T))

((only . T))
((#FRAME . T) (argument . T))
((((the . T)) ((function . T)) ((f . T)))
(#PREP. T)(to . T))))))))

((((#DOT . T))
((((((The . T)) ((#FRAME . T) (value . T))

((((f •T))) (#PREP . T) (of . T))))
((#COM T))
((((when . T)) ((x . T)) ((is . T)) ((zero . T))))
((#COM . T))
((((is . T)) ((one .T))))))))

((((#DOT . T))
((((((Otherwise . T))))

((#COLN . T))
((((the . T))

((#FRAME . T) (value . T))
((((f . T)

((is . T))
((the . T))
((product . T))

- 109 -

(((x . T))
((((((f . T)) ((((subl . T)) ((x . T)))))))
(#PREP . T)
(with. T)

(#PREP. T)
(of . T)))

(#PREP T)
(of . T))))))))

This last display removes the identification #FEATURE and dis-
plays the words as they appear in the bracketed form. Transfor-
mations would need to be applied to these to bring the preposi-
tions into the proper positions and to insert the indicated
punctuation marks. Aside from these two quite standard opera-
tions, output text will be generated from the internal incorpo-
rations simply by dropping all the parentheses - that is, by ig-
noring the hierarchical order in the incorporation.

((((#DOT)

(((((Let) (x)
(be)
(the)
(only)
(#FRAME argument)
(((the) (function) (f)) #PREP to)))))))

(((#DOT)
(((((The) (#FRAME value) (((f)) #PREP of)))

(#COM)
(((when) (x) (is) (zero)))
(#COM)
(((is) (one)))))))

(((#DOT)
(((((Otherwise)))

(#COLN)
(((the)

(#FRAME value)
(((f) (is)

(the)
(product)
(((x) (((((f) (((sub1) (x)))))) #PREP

with)) #PREP of))
#PREP
of)))))))

Here, by way of further example, is the computer analysis of
a definition of a function on strings. It includes the operation
of a frame feature. As the individual elements in the sequence
are scanned by the grouping routines, they are checked against a
fixed list of items which are presumed to have significance, and
from which the significance of the whole is to be derived. The
frame words identified here include: strings, arguments,return,
truth-value, truth, value, falsehood, length, else, begins, rest.
There are others used elsewhere. These are all items whose sig-
nificance will have to be "known" to the system before it can

- 110 -

0know" the function described by this text. Their role in the
later stages of the system's development will be to excite the

application of specific transformations to arrangements where the
principal technical issues requiring attention will include scope
and constituency.

>Occursin takes two strings, A and B, as arguments and returns
a truth-value as its value. We ask if the length of A is greater
than the length of B. If so, the value returned is falsehood.
Else, if A begins B : then the value returned is truth. Other-
wise we ask recursively if A occursin the rest of B.

((G0559
CONSEC
((G0561 FEATURES (#DOT . T))
(G0563
SERIAL

(G0425
CONSEC
((G0383 FEATURES (Occursin . T))

(G0385 FEATURES (takes . T))
(G0387 FEATURES (two . T))
(G0389 FEATURES (#FRAME. T) (strings .T))))

(G0427 FEATURES (#COM . T))
(G0421
CONSEC
((G0391 FEATURES (A . T))

(G0393 FEATURES (and . T))
(G0395 FEATURES (B . T))))

(G0423 FEATURES (#COM . T))
(G0417
CONSEC
((G0565 CONSEC

((G0399 FEATURES (#FRAME . T) (arguments
T)))

FEATURES
(#PREP . T)

(as . T))))
(G0419 FEATURES (#COLN . T))
(G0415
CONSEC
((G0401 FEATURES (and . T))

(G0403 FEATURES (#FRAME . T) (returns . T))
(G0405 FEATURES (a . T))
(G0407 FEATURES (#FRAME . T) (truth-value . T))
(G0567
CONSEC
((G0411 FEATURES (its . T))
(G0413 FEATURES (#FRAME . T) (value . T)))

FEATURES
(#PREP . T)(as . Ti))))))))

(G0553
CONSEC
((G0555 FEATURES (#DOT . T))

- ili -

(G 0 55 7
SERIAL
((G 0457
CONS EC
((G0429 FEATURES (We . T))
(G0431 FEATURES (ask . T))
(G0433 FEATURES (if . T))
(G0435 FEATURES (the . T))
(G0437 FEATURES (#FRAME . T) (length .T))

(G0569
CONS EC
((G0441 FEATURES (A . T))

(G0443 FEATURES (is . T))
(G0445 FEATURES (greater . T))
(G0447 FEATURES (than .T))

(G0449 FEATURES (the .T))

(G0451 FEATURES (#FRAME . T) (length .T))

(G0571 CONSEC
((G0455 FEATURES (B .T)))

FEATURES
(#PREP .T)
(of . T)))

FEATURES
(#PREP . T)
(of *T

(G0547
CONS EC
((G0549 FEATURES (#DOT . T))
(G0551
SERIAL
((G0475 CONSEC

((G0459 FEATURES (If .T)) (G0461 FEATURES
(so T))

(G0477 FEATURES (#COM . T))
(G0473
CONS EC

((G0463 FEATURES (the . T))
(G0465 FEATURES (#FRAME . T) (value . T))
(G0467 FEATURES (#FRAME . T) (returned .T))

(G0469 FEATURES (is . T))
(G0471 FEATURES (#FRAME . T) (falsehood

(G0541
CONS EC
((G0543 FEATURES (#DOT . T))
(G0545
SERIAL
((G0507 CONSEC ((G0479 FEATURES (Else T))

(G0509 FEATURES (*COM . T))
(G0503
CONS EC
((G0481 FEATURES (if . T))
(G0483 FEATURES tA . T))
(G0485 FEATURES (#FRAME . T) (begins .T))

(G0487 FEATURES (B T))
-112-

(G0505 FEATURES (#COLN . T))
(G0501
CONSEC
((G0489 FEATURES (then . T))
(G0491 FEATURES (the . T))
(G0493 FEATURES (#FRAME . T) (value . T))
(G0495 FEATURES (#FRAME . T) (returned . T))
(G0497 FEATURES (is . T))
(G0499 FEATURES (#FRAME . T) (truth .T))))))))

(G0535
CONSEC

((G0537 FEATURES (#DOT . T))
(G0539
SERIAL
((G0533

CONSEC
((G0511 FEATURES (Otherwise . T))
(G0513 FEATURES (we . T))
(G0515 FEATURES (ask . T))

(G0517 FEATURES (recursively . T))
(G0519 FEATURES (if . T))
(G0521 FEATURES (A . T))
(G0523 FEATURES (occursin . T))
(G0525 FEATURES (the . T))
(G0527 FEATURES (#FRAME . T) (rest . T))
(G0573 CONSEC

((G0531 FEATURES (B . T)))
FEATURES

(#PREP . T)

(of . T)))))))))

In the next extension of the system, we will provide simple means
to permit the user to introduce those words or items that are
assumed to be available in advance. These items define the frame
within which the text is to be understood.

We have also processed a number of English sentences taken
from the manual of courts martial. This language ought to be as
precise as any English text, and its analysis by computer may on
occasion be representative of what must be done in other situa-
tions. A certain strength in the processes is revealed by these
analyses, since they take very little time, and some of the sen-
tences processed were quite large. We give the first in its full
display.

>The actions and demeanor of the accused as observed by the
court : or the bare assertion from a reliable source : that the
accused is believed to lack mental capacity : or is mentally
irresponsible may be sufficient to warrant inquiry by the
court.

((G0327
CONSEC
((G0329 FEATURES (#DOT . T))

(G0331
- 113 -

SERIAL
(G0323
CONSEC
((G0221 FEATURES (The . T))
(G0223 FEATURES (actions . T))
(G0225 FEATURES (and . T))
(G0227 FEATURES (demeanor . T))
(G0333
CONSEC
((G0231 FEATURES k'the . T)) (G0233 FEATURES

(accused T)))
FEATURES
(#PREP . T)
(of . T))))

(G0325 FEATURES (#COLN . T))
(G0319
CONSEC
((G0335

CONSEC
((G0237 FEATURES (observed . T))
(G0337
CONSEC
((G0241 FEATURES (the . T)) (G0243 FEATURES

(court . T)))
FEATURES
(#PREP . T)

(by . T)))
FEATURES
(#PREP . T)
(as . T))))

(G0321 FEATURES (#COLN . T))
(G0315
CONSEC
((G0245 FEATURES (or T))

(G0247 FEATURES (the . T))
(G0249 FEATURES (bare. T))
(G0251 FEATURES (assertion . T))
(G0339
CONSEC
((G0255 FEATURES (a . T))
(G0257 FEATURES (reliable . T))
(G0259 FEATURES (source . T)))

FEATURES
(#PREP T)
(from T))))

(G0317 FEATURES (#COLN . T))
(G0311
CONSEC
((G0261 FEATURES (that . T))
(G0263 FEATURES (the . T))

(G0265 FEATURES (accused . T))
(G0267 FEATURES (is . T))
(G0269 FEATURES (believed . T))
(G0341
CONSEC

- 114 -

((G0273 FEATURES (lack . T))
(G0275 FEATURES (mental . T))
(G0277 FEATURES (capacity . T)))

FEATURES
(#PREP. T)
(to . T))))

(G0313 FEATURES (#COLN . T))
(G0307
CONSEC

((G0279 FEATURES (or . T))
(G0281 FEATURES (is . T))
(G0283 FEATURES (mentally . T))
(G0285 FEATURES (irresponsible . T))))

(G0309 FEATURES (#COLN . T))
(G0305
CONSEC
((G0287 FEATURES (may . T))
(G0289 FEATURES (be . T))
(G0291 FEATURES (sufficient . T))
(G0343
CONSEC
((G0295 FEATURES (warrant . T))
(G0297 FEATURES (inquiry . T))

(G0345
CONSEC
((G0301 FEATURES (the . T)) (G0303 FEATURES

(court . T)))
FEATURES
(#PREP . T)
(by . T)))

FEATURES
(#PREP . T)
(to . T)))))))))

Exactly the same parsing machinery was used for this exar:ple as

for the others. Here we give the longest sentence tried so far,
in two versions - first in its full representation, and then as a
system of features (which appearhere as dotted pairs). indi-
cated. This example makes use of the pause indicator ":".

>Although the testimony of an expert on mental disorders : as to
his observations and opinion with respect to the mental condition
of the accused : may be given greater weight than that of a lay
witness, a lay witness who is acquainted with the accused : and
who has observed his behavior : may testify as to his observa-
tions : and may also give such an opinion : as to the general
mental condition of the accused : as may be within the bounds
of the common experience and means of observation of men.

((G0435
CONSEC
((G0437 FEATURES (#DOT . T))

(G0439
SERIAL
((G0431

- 115-

CONS EC
((G0221 FEATURES (Although .T))

(G0223 FEATURES (the . T))
(G0225 FEATURES (testimony .T))

(G0441
C ON SEC
((G0229 FEATURES (an . T))

(G0231 FEATURES (expert . T))
(G0443
C ON SEC
((G0235 FEATURES (mental . T))
(G0237 FEATURES (disorders .T)))

FEATURES
(#PREP . T)
(on . T)))

FEATURES
(#PREP . T)
(of .T))

(G0433 FEATURES (#COLN .T))

(GO 427
C ONS EC
((G 0445
C ONS EC
((G 0447
C ONS EC
((G0243 FEATURES (his . T))
(G0245 FEATURES (observations .T))

(G0247 FEATURES (and . T))
(G0249 FEATURES (opinion . T))
(G0449
C ONS EC
((G0253 FEATURES (respect . T))
(G 0451
CONS EC
((G0257 FEATURES (the . T))
(G0259 FEATURES (mental . T))
(G0261 FEATURES (condition . T))
(GO 453
C ONS EC
((G0265 FEATURES (the . T))
(G0267 FEATURES (accused .T)))

FEATURES
(#PREP . T)
(of . T)))

FEATURES
(#PREP . T)
(to . T)))

F EAT URES
(#PREP .T)

(with .T))),

F EAT UR ES
(#PREP . T)
(to . T)))

FEATURES
(#PREP .T)

-116-

(a .s
(G0429 FEATURES (#COLN . T))
(G0 42 3
C ON SEC
((G0269 FEATURES (may . T))
(G0271 FEATURES (be .T))
(G0273 FEATURES (given . T))
(G0275 FEATURES (greater .T))

(G0277 FEATURES (weight .T))

(G(279 FEATURES (than . T))
(G0281 FEATURES (that . T))
(G 045 5
C ON SEC
((G0285 FEATURES (a . T))

(G0287 FEATURES (lay . T))
(G0289 FEATURES (witness . T)))

FEATURES
(#PREP . T)
(of .T))

(G0425 FEATURES (*COM . T))
(G0419
CONS EC
((G0291 FEATURES (a .T))

(G0293 FEATURES (lay . TI
(G0295 FEATURES (witness .T))
(G0297 FEATURES (who T))
(G0299 FEATURES (is T))
(G0301 FEATURES (acquainted .T))

(G0457
C ON SEC
((G0305 FEATURES (the . T)) (G0307 FEATURES

(accused .T)))

FEATURES
(#PREP T)
(with T))

(G0421 FEATURES (#COLN . T))
(G0415
C ON SEC
((G0309 FEATURES (and . T))
(G0311 FEATURES (who .T))
(G0313 FEATURES (has . T))
(G0315 FEATURES (observed . T))
(G0317 FEATURES (his .T))
(00319 FEATURES (behavior . T)f)j

(G0417 FEATURES (#COLN .T))

(G0411
C ON SEC
((G0321 FEATURES (may T))
(G0323 FEATURES (testify .T))

(G0459
C ON SEC

(G(0461
C ON SEC
((00329 FEATURES (his .T))

(00331 FEATURES (observations .T)))

FEATURES
(#PREP . T)
(to . T)))

FEATURES
(#PREP . T)
(as . T)))

(G0413 FEATURES (#COLN . T))
(G0407
CONSEC
((G0333 FEATURES (and . T))
(G0335 FEATURES (may . T))
(G0337 FEATURES (also . T))
(G0339 FEATURES (give . T))
(G0341 FEATURES (such . T))
(G0343 FEATURES (an . T))
(G0345 FEATURES (opinion T))))

(G0409 FEATURES (#COLN . T))
(G0403
CONSEC
((G0463
CONSEC
((G0465
CONSEC
((G0351 FEATURES (the. T))
(G0353 FEATURES (general . T))
(G0355 FEATURES (mental .T))

(G0357 FEATURES (condition . T))
(G0467

C ONSEC
((G0361 FEATURES (the . T))
(G0363 FEATURES (accused . T)))

FEATURES

(#PREP. T)
(of . T)))

FEATURES
(#PREP . T)
(to . T)))

FEATURES
(#PREP . T)
(as . T))))

(G0405 FEATURES (#COLN . T))
(G0399
CONSEC
((G0469
CONSEC
((G0367 FEATURES (may . T))
(G0369 FEATURES (be . T))
(G0471
CONSEC
((G0373 FEATURES (the . T)) (G0375 FEATURES

(bounds . T)))
FEATURES

(#PREP. T)

(within . T)))
FEATURES

- 118 -

(#PREP . T)
(as .T))

(G0401 FEATURES (#COLN .T))

(G0397
CONS EC

(G0473
CONS EC

((G0379 FEATURES (the . T))
(G0381 FEATURES (common . T))
(G0383 FEATURES (experience . T))
(G0385 FEATURES (arid . T))

(G0387 FEATURES (means . T))
(G0475
C ONSE C

((G0391 FEATURES (observation . T))
(G0477 CONSEC

((G0395 FEATURES (men . T)))
FEATURES
(#PREP . T)
(of . T)))

FEATURES
(#PREP . T)
(of . T)))

FEATURES
(#PREP . T)
(of . T))))

(((((#DOT .T))
((((((Although .T))

((the . T))
((testimony .T))

((((an . T))
((expert . T))
((((mental . T)) ((disorders .T))) (#PREP .T)

(on .T)))

(#PREP . T)
(of T))

((#COLN .T))

((observations . T))

((and . T))
((opinion . T))
((((respect . T))

((((the . T))
((mental . T))
((condition . T))
((((the . T)) ((accuse,-' T))) (#PREP

T) (of .T)))

(#PREP . T)
(to . T)))

(#PREP . T)
(with . T)))

(#PREP . T)
(to .T)))

-119-

(#PREP . T)
(as . Tr))))

((((may . T))
(CO . T))

((be . T))
((given . T))
((greater .T))

((weight .T))

((than . T))
((that . T))
((((a . T)) ((lay .T)) ((witness .T)))

(#PREP . T)
(of .T))

((tCOM . T))
(((a .T))

((lay . T))
((Witness . T))
((who. T))
((is .T))

((acquainted . T))
T)((((the . T)) ((accused .T))) (#PREP .T) (with

((#COLN . T))
((((and . T)) ((Who . T))

((has . T))
((observed . T))
((his . T))

((#COLN . T)) M hvo))

((((may . T))
((testify . T))

(to)((((((his . T)) ((observations .T))) (#PREP .T)

(#PREP . T)
(as T))

((#COLN .T))

((((and .T)) ((may .T))

((also .T))

((give .T))

((such .T))

((an . T))
((opinion .T))

((#COLN . T))
(M(M he .T))

((general .T))

((mental .T))

((condition . T))
(of ((((the . T)) ((accused .T))) (#PREP .T)

(#PREP . T)
(to .T)))

(#PREP .T)

(as .T))))

((#COLN .T))

((((((may . T))
-120 -

((be. T))
((((the . T)) ((bounds . T))) (#PREP . T)

(within . T)))
(#PREP . T)
(as T))))

((#COLN . T))
(((((the . T))

((common . T))
((experience . T))
((and . T))
((means . T))
((((observation . T)) ((((men . T))) (#PREP

T) (of T))) .
(#PREP . T)
(of . T)))

(#PREP. T)
(of . T)))))))))

E. The programs

The programs were written as LISP functions, and although
there are complications, the logic is fairly straightforward.
The complications arise because the control characters for the
LISP system must be undone and then done up again before and
after English text is entered into the system. The functions I-
NITABLE and UNINITABLE do this modification.
(DEFPROP INITABLE
(LAMBDA NIL
(MODCHR 95. (MODCHR 44. NIL))
(MODCHR 33. (MODCHR 44. NIL))
(MODCHR 37. (MODCHR 44. NIL))
(MODCHR 63. (MODCHR 44. NIL))
(MODCHR 58. (MODCHR 44. NIL))
(MODCHR 59. (MODCHR 44. NIL))
(MODCHR 94. (MODCHR 44. NIL)))

EXPR)
(DEFPROP UNINITABLE
(LAMBDA NIL
(MODCHR 95. (MODCHR 65. NIL))
(MODCHR 33. (MODCHR 65. NIL))
(MODCHR 37. (MODCHR 65. NIL))
(MODCHR 63. (MODCHR 65. NIL))
(MODCHR 58. (MODCHR 65. NIL))
(MODCHR 59. (MODCHR 65. NIL))
(MODCHR 94. (MODCHR 65. NIL)))

EXPR)

The present top level function is BEGIN and it continues to read
and process English text until given a left arrow symbol as ter-
minator.

(DEFPROP BEGIN
(LAMBDA NIL
(SPRINT (PRT-OCC (PREP-PARSE (GORP (READIT)))) 1.))

EXPR)
- 121 -

J - " - . . .+ ' " '... '. . ."- • + -l'C- - - +' ' ,., -I, - i
- = .- d

The parse control is set up by the function READIT which calls
INITABLE to modify the control characters, prints the prompt
character, looks for the terminating symbol, and then sends the
sequence of items to PARSEO.
(DEFPROP READIT
(LAMBDA NIL
(PROG (DOT AT SENT LEX)

(SETQ DOT (MODCHR 46. (MODCHR 44. NIL)))
(SETQ AT (MODCHR 64. (MODCHR 44. NIL)))
(INITABLE)
(PROMPT 62.)
(TERPRI)
(CLRBFI)
(SETQ SENT NIL)

LOOP (SETQ LEX (READ))
(COND ((EQ LEX (QUOTE #TERM))

(RETURN
(PROGI (PARSE0 SENT)

(PROMPT 42.)
(MODCHR 46. DOT)
(MODCHR 64. AT)
(UNINITABLE))))

(T (SETQ SENT (KONS SENT LEX)) (GO LOOP)))))
EXPR)

There are three basic structures representable in the system's
forms. These are SERIALly ordered sets of occurrences, UNORDERED
sets of occurrences, and CONSECutively ordered sets of occur-
rences. The difference between SERIAL and CONSECutive order is
that the items in a serially ordered set may have other items
occurring among them, so long as their relative order is correct.
CONSECutive sets must be just that. These three discriminations
are easily definable with reference only to occurrence structure,
and when we expand the system to deal with more complex levels of
language processing we expect to make significant use of these
different forms. At present they are unused, but that is only
because the system is largely front-end at present. PARSEO and
PARSE1 generate occurrences to reflect the individual items in
the input sequence, and the assemblies of these into arrangements
which are appropriately ordered. PARSEO looks for the termina-
ting character, generates occurrence identifiers, and passes theinput to PARSE1 which includes the error checks, looks for cer-

tain high level bracketing characters which we have not displayed
in the examples shown here, looks for the punctuation marks, and
handles the processing of subsequences.

(DEFPROP PARSEO
(LAMBDA(S)
(PROG (Y Z)

(COND ((NULL S) (RETURN NIL)))
(SETQ Y (PARSEl S))
(COND
((NULL (CDR Y))
(RETURN

(#MK-DOM INANT
- 122 -

(#MK-OCC)
(COND ((ATOM (CAR Y)) Y) (T (CAR Y)))
(QUOTE SERIAL))))

((MEMO (CADR Y) (QUOTE (*EXCL #QUES *DOT))
(SETQ Z (PARSEO (CDDR Y))
(COND
((NULL Z)
(RETURN

(#MJ(-DOM INANT
(#M K-0CC)
(LIST

(#ADD-FEATURE (#MK-OCC) T (CADR Y))
(#MK-DOM INANT
(#MK-OCC)

(COND ((ATOM (CAR Y)) (LIST (CAR Y)))I
(T (CAR Y)))

(QUOTE SERIAL)))
(QUOTE CONSEC))))

(RETURN
(LIST

(#MK-DOMINANT
(#MK-OCC)
(LIST
(#ADD-FEATURE (#MK-OCC) T (CADR Y))
(#MK-DOMINANT
(#MK-OCC)
(COND ((ATOM (CAR Y)) (LIST (CAR Y)))

(T (CAR Y)))
(QUOTE SERIAL)))

(QUOTE CONSEC))

(T (ERROR (PRINTO ILLEGAL SENTENCE TERMINATOR))))))
E XPR)

(DEFPROP PARSEI
(LAMBDA(S)
(PROC (P LEX Z)

(SETO P NIL)
LOOP (COND

((NULL S)
(COND
((NULL P) (ERROR (PRINTQ SYNTAX ERROR)))
(T
(RETURN
(LIST

(#MK-DOMINANT (#MK-OCC)
P
(QUOTE CONSEC))))))))

(SETO LEX (CAR S))
(COND
((MEMO LEX (QUOTE (#ACCT #STOP)))
(C OND
((NULL (CDR S))
(ERROR

-123-

(PRINTQ ACCENT
or
STOP
not
followed
by
an
atom)))

((ASSOC (CADR. S) SYMS)
(ERROR
(PRINTO ACCENT

or
STOP
followed
by
an
illegal
character)))

((ATOM (CADR. S))
(SETQ
P
(KONS
P
(#MK-DOM INANT
(#MK-OCC)
(LIST (#ADD-FEATURE (#MIC-OCC) T LEX)'

(#ADD-FEATURE (#MI(-OCC) T (CADR S)))
(QUOTE CONSEC))))

(SETO S (CDDR S))
(GO LOOP))
(T
(ERROR
(PRINTO ACCENT

or
STOP
may
not
be
followed
by
a
parenthesized
expression)))))

((MEMO LEX (QUOTE (*COM #COLN #SEMI #PAUS)))
(SETQ Z (PARSEl (CDR S)))
(COND
((ATOM (CAR Z))
(RETURN
(CONS
(LIST
(#MK-DOMINANT (#MK-OCC) P (QUOTE CONSEC))
(#ADD-FEATURE (#MK-OCC) T LEX)
(CAR Z))

(CDR Z))))
(T

-124-

(RETURN
(CONS
(*APPEND

(LIST
(#MK-DOMINANT (#MK-OCC) P (QUOTE CONSEC))
(#ADD-FEATURE (#MK-OCC) T LEX))

(CAR Z))
(CDR Z))))))

((MEMO LEX (QUOTE (#EXCL #DOT #QUES)))
(RETURN
(CONS (#MK-DOMINANT (#MK-OCC) P (QUOTE CONSEC))

s)))
((ATOM LEX)
(SETO P (KONS P (#ADD-FEATURE (#MK-OCC) T LEX)))
(SETO S (CDR S))
(GO LOOP))

(T (SETO Z (PARSEl LEX))
(NILL LEX IS A LIST)
(COND
((NULL (CDR Z)) (SETO P (KONS P (CAR 7)))

(SETQ S (CDR S))

(GO LOOP))
(T
(ERROR
(PRINTO illegal

nesting
of
expressions))))))))

EXPR)

There is not space here, or inclination, to survey all these
functions, so we will briefly review just a few of them. The
function #MK-OCC generates a new occurrence.

(DEFPROP #MK-OCC
(LAMBDA NIL
(PROG (X)

(SETO X (INTERN (GENSYM)))
(PUTPROP X T (QUOTE OCCURRENCE))
(PUTPROP X (INTERN (GENSYM)) (QUOTE NEUTRAL))
(SET X X)
(RETURN X)))

EXPR)

The function #MK-DOMINANT does just that - itspecifies that a
given list of occurrences is subordinate to another specified
occurrence.

(DEFPROP #MK-DOMINANT
(LAMBDA(X Y ORDER)
(PROG (A)

(RTETURN
(COND
((GET X (QUOTE OCCURRENCE))
(MAPCAR

- 125 -

(FUNCTION
(LAMBDA (Y)
(COND
((GET Y (QUOTE OCCURRENCE)) T)
((ERROR

(PROGN
(PRINT* (LIST Y))
(PR INTO NOT

AN
OCCURRENCE

#MK-DOMINANT)))))))
Y)
(SETO A (GET X (QUOTE NEUTRAL)))
(SELECTQ
ORDER
((QUOTE UNORDERED)

(PUTPROP A (*APPEND Y (GET A ORDER)) ORDER))
((QUOTE CORSEC)
(PUTPROP A (CONS Y (GET A ORDER)) ORDER))
((QUOTE SERIAL)
(PUTPROP A (CONS Y (GET A ORDER)) ORDER))
((ERROR

(PROGN
(PRINT* (LIST ORDER))
(PRINTQ INVALID

ORDER
CLASS

#MK-DOMINANT)))))
X)
((ERROR

(PROGN
(PRINT* (LIST X))
(PRINTQ NOT

AN
OCCURRENCE

#MK-DOMINANT))))))))
EXPR)

The function FRAME takes an occurrence or list of occurrences and
marks the items specified in the second argument list. It calls
ADD-FEATURE and #MK-DOMINANT, because those are the two principle
functions it specifies.

(DEFPROP FRAME
(LAMBDA (OCC SEQ)
(SEARCH OCC

(#MK-DOMINANT (#MK-OCC)
(COMPOSE SEQ)
(QUOTE UNORDERED))

(FUNCTION
(LAMBDA (Y) (#ADD-FEATURE Y T (QUOTE #FRAME))))))

EXPR)
- 126 -

(DEPPROP #ADD-FEATURE
(LAMBDA(X SIGN F)
(COND ((GET X (QUOTE OCCURRENCE))

(PUTPROP
x
(CONS (CONS F SIGN) (GET X (QUOTE FEATURES)))
(QUOTE FEATURES))

X)
((ERROR

(PROGN (PRINT* (LIST X))
(PRINTQ NOT

AN
OCCURRENCE

*ADD-FEATURE))))))
EXPR)

-127-

Bibliography

(Anderson, 19801 Anderson, J. R., "Arguments concerning repre-
sentations for mental imagery," in (Seamon, 1980], pp. 243 -
271.

(Brinch Hansen, 1973] Brinch Hansen, P., Operating System
Principles, Engelwood Cliffs, N.J.: Prentice-HaIT.

(Brown, 19721 Brown, G. Spencer, Laws of Form, New York: The
Julian Press.

(Chomsky, 1957] Chomsky, Noam, Syntactic Structures, The Hague:
Mouton.

(Chomsky, 1961] "Some Methodological Remarks on Generative Gram-
mar", Word, (17), pp. 219 - 239. Selected parts reprinted in
(Fodor, -96-41 as "Degrees of Grammaticalness", pp. 384 - 389.

(Chomsky, 19651 Chomsky, Noam, Aspects of the Theory of Syntax,
Cambridge: M.I.T. Press.

(Chomsky, 1968] Chomsky, Noam, Language and Mind, New York:
Harcourt Brace Jonanovich.

(Chomsky, 19711 Chomsky, Noam, "Deep Structure, Surface Struc-
ture, and Semantic Interpretation", in (Steinberg, 1971], pp.
183 - 216.

(Chomsky, 1975] Chomsky, Noam, The Logical Structure of
Linguistic Theory, New York: Plenum Press.

(Chomsky, 1977] Chomsky, Noam, Essays on Form and Interpretation,
New York: North-Holland.

(Ciba, 1979] CIBA Foundation Symposium 69, Brain and Mind, New
York: Excerpta Medica.

[Church, 1936] Church, Alonzo, "A note on the
entscheidungsproblem", The Journal of Symbolic Logic, (1:1), pp.
40 - 41.

[Church, 1941] Church, Alonzo, "The Calculi of Lambda Conver-
sion", Annals of Mathematics Studies no. 6, Princeton, N.J.:
Princeton Univer--ty Press.

[Davidson, 1972] Davidson, Donald and Harmon, Gilbert (Eds.),
Semantics of Natural Language, Boston: D. Reidel.

[Fillmore, 1968] Fillmore, Charles J., "The Case for Case", in
[Bach, 1968], pp. 1 - 88.

[Fillmore, 19721 Fillmore, Charles J., "On Generativity", in
- 128 -

[Peters, 19721, pp. 1 - 19.

[Fillmore, 19711 Fillmore, Charles J. and Langendoen, D. T.,
Studies in Linguistic Semantics, New York: Holt, Rinehart and
Winston.

[Fodor, 19751 Fodor, Jerry A., The Language of Thought, Cam-
bridge: Harvard University Press-.

[Fodor, 1964] Fodor, Jerry A. and Katz, Jerrold J., The
Structure of Language - Readings in the Philosophy of Language,
ENglewood CITffs, N.J.: Prentice-Hall.

[Granit, 19551 Granit, Ragnor, Receptors and Sensory Perception,
New Haven: Yale University Press.

(Gruber, 1976) Gruber, Jeffrey S., Lexical Structures in Syntax
and Semantics, New York: North-Holland.

[Jackendoff, 1972] Jackendoff, Ray S., Semantic Interpretation in
Generative Grammar, Cambridge: M.I.T. Press.

[Jardine, 1975] Jardine, Nicholas, "Model Theoretic Semantics and
Natural Language", in [Keenan, 1975], pp. 219 - 240.

[Katz, 1977) Katz, Jerrold, Propositional Structure and
Illocutionary Force, Cambridge: Harvard University Press.

[Katz, 19631 Katz, Jerrold J. and Fodor, Jerry A., "The Struc-
ture of a Semantic Theory", in (Fodor, 1964, pp. 479 - 518.

[Keenan, 19751 Keenan, Edward L. (Ed.), Formal Semantics of
Natural Language, Cambridge: Cambridge University Press.

[Kleene, 1936) Kleene, Stepehen Cole, "General Recursive Func-
tions of Natural Numbers", Mathematische Annalen, (112), pp. 727
- 742.

[Kosslyn, 19781 Kosslyn, S., "Imagery and Internal Representa-
tion," in [Rosch, 19781, pp. 217 - 257.

[Kosslyn, 1980) Kosslyn, S. M., Murphy, G. L., Bemesderfer, M.
E. and Feinstein, K. J., "Category and continuum in mental
comparisons," in [Seamon, 1980], pp. 207 - 242.

[Kowalski, 19791 Kowalski, Robert, Logic for Problem Solving, New
York: North Holland.

(Lakoff, 1967] Lakoff, G. and Ross, J. R., "Is Deep Structure
Necessary?" Duplicated, M.I.T.

[Lakoff, 1971] Lakoff, George , "On Generative Semantics", in
(Steinberg, 1971], pp. 232 - 296.

[Lakoff, 1972] Lakoff, George, "Linguistics and Natural Logic",
- 129 -

in [Davidson, 1972], pp. 545- 665.

[Lakoff, 1980] Lakoff, George and Johnson, Mark, Metaphors We
Live By, Chicago: The University of Chicago Press.

[Langer, 19421 Langer, Susanne K., Philosophy in a New Key, New
York: Mentor Books.

[Mountcastle, 19741 Mountcastle, Vernon B., Medical Physiology
Volume One, Saint Louis: The C. V. Mosby Company.

(Perkel, 19691 Perkel, D.H. and Bullock, T.H., "Neural Coding",
in Neurosciences Research Symposium Summaries, edited by F.O.
Schmitt, T. Melnechui, t.. Quarton and G. Adelman, Cambridge:
M.I.T. Press.

[Peters, 19721 Peters, Stanley (Ed.), Goals of Linguistic Theory,
Englewood Cliffs, N.J.: Prentice-Hall.

[Post, 1943] Post, Emil L., "Formal Reductions of the General
Combinatorial Decision Problem", American Journal of Mathematics,
(65), pp. 197 - 215.

(Potts, 1975] Potts, Timothy C., "Model Theory and Linguistics",
in [Keenan, 19751, pp. 241 - 250.

[Putnam, 1979] Putnam, Hilary, in [Ciba, 1979], p. 366.

[Robinson, 1979] Robinson, J.A., Logic: Form and Function,
Edinburgh: Edinburgh University Press.

[Schoenfinkel, 1924] Schoenfinkel, Moses, "On the Building Blocks
of Mathematical Logic", in [van Heijenoort, 1967], pp. 355 -
366.

[Scott, 1970] Scott, Dana, Outline of a Mathematical Theory of
Computation, Oxford University Comiiputing Labs, PRG-2, Oxfor-d
University.

[Seamon, 1980] Seamon, John G., Human Memory - Contemporary
Readings, New York: Oxford Univers-ity Press. [Steinberg, 1971]
Steinberg, Danny D. and Jakobovits, Leon A. (Eds.), Semantics:
An Interdisciplinary Reader in Philosophy, Linguistics and
P-ychology, Cambridge: CambridgeUniversity Press.

[Stent, 1978] Stent, G.S., Kristan, W. B., Friesen, W. 0., Ort,
C. A., Poon, M. and Calabrese, R. L., "Neuronal Generation of
the Leech Swimming Movement," Science, (200), pp. 1348 - 1357.

[Turing, 1937] Turing, A. M., "On Computable Numbers with an
Application to the Entscheidungsproblem," Proceedings of the
London Mathematical Society, ser. 2 (42), pp. 230 2; Cor-
rection, ibid (4p3) -pp44- 546.

- 130 -

[Ullmann, 1959) Ullmanno Stephen, The Principles of Semantics,
oxford: Basil Blackwell.

[van Heijenoort, 19671 van Heijenoort, Jean, From Freqe to Goedel
- A Source Book in Mathematical Logic, 18719 -1931, Cambridge:
flariiara--Un-ver9-1tE IFFess. - -__

(Weinreich, 1980] Weinreich, Uriel, On Semantics, University of
Pennsylvania Press.

-131-

MISSION
Of

Ro~m Air Development Center
RAVC ptanA and executes %eseach, devetopment, test and
Aetected acquisition ptogu'tms in Auppo% o6 Command, Contwt
Comm nico.UonA and In-tetUgence (C31) activitie. Tci
and enginee~ing 6up~ w~tUhn eAea6 o6 techincate compe.tence
iAd pkovtied to ESP Ptog.'am O&2ies IP0) and otheL ESP)
etements. The p'rincipa.t technicat mission a'Lea a'Le
communiLlcaions, etec-t/omagnetie guidance and contt, .6uA-vetUance o6 qxowzd and aeLo.6pace objects, inteLZigence d~ata
cotfecton and handting, in6o~mation sys~temn technotogy,
ionosphe'r.c ptopaga..aon, sotid s.tate sciZences, micLomv~e
physics6 and etectLonic 'Letiabitity, maint&inabitity and
compatibititij.

